Quadratic-Exponential Growth BSDEs with Jumps and Their Malliavin's Differentiability

M. Fujii, Akihiko Takahashi
{"title":"Quadratic-Exponential Growth BSDEs with Jumps and Their Malliavin's Differentiability","authors":"M. Fujii, Akihiko Takahashi","doi":"10.2139/ssrn.2705670","DOIUrl":null,"url":null,"abstract":"We investigate a class of quadratic-exponential growth BSDEs with jumps. The quadratic structure introduced by Barrieu & El Karoui (2013) yields the universal bounds on the possible solutions. With local Lipschitz continuity and the so-called A_gamma-condition for the comparison principle to hold, we prove the existence of a unique solution under the general quadratic-exponential structure. We have also shown that the strong convergence occurs under more general (not necessarily monotone) sequence of drivers, which is then applied to give the sufficient conditions for the Malliavin's differentiability.","PeriodicalId":129812,"journal":{"name":"Financial Engineering eJournal","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Financial Engineering eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2705670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

We investigate a class of quadratic-exponential growth BSDEs with jumps. The quadratic structure introduced by Barrieu & El Karoui (2013) yields the universal bounds on the possible solutions. With local Lipschitz continuity and the so-called A_gamma-condition for the comparison principle to hold, we prove the existence of a unique solution under the general quadratic-exponential structure. We have also shown that the strong convergence occurs under more general (not necessarily monotone) sequence of drivers, which is then applied to give the sufficient conditions for the Malliavin's differentiability.
具有跳跃的二次-指数增长BSDEs及其Malliavin可微性
研究了一类带跳跃的二次指数增长BSDEs。Barrieu & El Karoui(2013)引入的二次型结构给出了可能解的普遍边界。利用局部Lipschitz连续性和比较原理的a_gamma条件,证明了一般二次指数结构下唯一解的存在性。我们还证明了强收敛在更一般的(不一定是单调的)驱动序列下发生,然后应用它给出了Malliavin可微性的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信