Modeling user hidden navigational behavior for Web recommendation

Guandong Xu, Lin Li, Yanchun Zhang, X. Yi, M. Kitsuregawa
{"title":"Modeling user hidden navigational behavior for Web recommendation","authors":"Guandong Xu, Lin Li, Yanchun Zhang, X. Yi, M. Kitsuregawa","doi":"10.3233/WIA-2011-0217","DOIUrl":null,"url":null,"abstract":"Web users exhibit a variety of navigational interests through clicking a sequence of Web pages. Analyses of Web usage data will lead to discovering Web user access patterns, and in turn, facilitating users to locate more preferable Web contents via collaborative recommendation techniques. In the context of Web usage mining, Latent Semantic Analysis (LSA) based on probability inference provides a promising approach to capture not only user hidden navigational patterns, but also the associations between users, pages and hidden navigational patterns. The discovered user access patterns could be used as a usage reference base for identifying the new user's access preferences and making usage-based collaborative Web recommendations. In this paper, we propose a novel usage-based Web recommendation framework, in which Latent Dirichlet Allocation (LDA) is employed to learn the underlying task space from the training Web log data and infer the task distribution for a target user via task inference. The main advantages of the adapted LDA model are its capabilities of efficiently learning the semantic usage information from the Web log data and effectively inferring the access preference of the target user even with a few Web clicks that might be unseen in the training data. In this paper, we also investigate the determination of an optimizing task number, which is another important problem commonly encountered in latent semantic analysis. Experiments conducted on a real Web log dataset show that this approach can achieve better recommendation performance in comparison to other existing techniques. And the discovered task-simplex expression can also provide a better interpretation for Web designers or users to better understand the user navigational preference.","PeriodicalId":263450,"journal":{"name":"Web Intell. Agent Syst.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web Intell. Agent Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/WIA-2011-0217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Web users exhibit a variety of navigational interests through clicking a sequence of Web pages. Analyses of Web usage data will lead to discovering Web user access patterns, and in turn, facilitating users to locate more preferable Web contents via collaborative recommendation techniques. In the context of Web usage mining, Latent Semantic Analysis (LSA) based on probability inference provides a promising approach to capture not only user hidden navigational patterns, but also the associations between users, pages and hidden navigational patterns. The discovered user access patterns could be used as a usage reference base for identifying the new user's access preferences and making usage-based collaborative Web recommendations. In this paper, we propose a novel usage-based Web recommendation framework, in which Latent Dirichlet Allocation (LDA) is employed to learn the underlying task space from the training Web log data and infer the task distribution for a target user via task inference. The main advantages of the adapted LDA model are its capabilities of efficiently learning the semantic usage information from the Web log data and effectively inferring the access preference of the target user even with a few Web clicks that might be unseen in the training data. In this paper, we also investigate the determination of an optimizing task number, which is another important problem commonly encountered in latent semantic analysis. Experiments conducted on a real Web log dataset show that this approach can achieve better recommendation performance in comparison to other existing techniques. And the discovered task-simplex expression can also provide a better interpretation for Web designers or users to better understand the user navigational preference.
为Web推荐建模用户隐藏的导航行为
Web用户通过单击一系列Web页面来展示各种导航兴趣。对Web使用数据的分析将导致发现Web用户访问模式,进而通过协作推荐技术帮助用户定位更可取的Web内容。在Web使用挖掘的背景下,基于概率推理的潜在语义分析(LSA)提供了一种很有前景的方法,不仅可以捕获用户隐藏的导航模式,还可以捕获用户、页面和隐藏导航模式之间的关联。发现的用户访问模式可以用作识别新用户访问首选项和提出基于使用的协作Web建议的使用参考基础。在本文中,我们提出了一种新的基于使用情况的Web推荐框架,该框架使用潜狄利克雷分配(Latent Dirichlet Allocation, LDA)从训练Web日志数据中学习底层任务空间,并通过任务推理推断目标用户的任务分布。调整后的LDA模型的主要优点是它能够有效地从Web日志数据中学习语义使用信息,并有效地推断目标用户的访问偏好,即使在训练数据中可能看不到的一些Web点击。本文还研究了潜在语义分析中常见的另一个重要问题——优化任务数的确定。在真实的Web日志数据集上进行的实验表明,与其他现有技术相比,该方法可以获得更好的推荐性能。发现的任务单纯形表达式还可以为Web设计人员或用户提供更好的解释,从而更好地理解用户的导航偏好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信