Dynamic data dependence tracking and its application to branch prediction

Lei Chen, S. Dropsho, D. Albonesi
{"title":"Dynamic data dependence tracking and its application to branch prediction","authors":"Lei Chen, S. Dropsho, D. Albonesi","doi":"10.1109/HPCA.2003.1183525","DOIUrl":null,"url":null,"abstract":"To continue to improve processor performance, microarchitects seek to increase the effective instruction level parallelism (ILP) that can be exploited in applications. A fundamental limit to improving ILP is data dependences among instructions. If data dependence information is available at run-time, there are many uses to improve ILP. Prior published examples include decoupled branch execution architectures and critical instruction detection. In this paper, we describe an efficient hardware mechanism to dynamically track the data dependence chains of the instructions in the pipeline. This information is available on a cycle-by-cycle basis to the microengine for optimizing its performance. We then use this design in a new value-based branch prediction design using available register value information (ARVI). From the use of data dependence information, the ARVI branch predictor has better prediction accuracy over a comparably sized hybrid branch predictor With ARVI used as the second-level branch predictor the improved prediction accuracy results in a 12.6% performance improvement on average across the SPEC95 integer benchmark suite.","PeriodicalId":150992,"journal":{"name":"The Ninth International Symposium on High-Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings.","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ninth International Symposium on High-Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2003.1183525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

To continue to improve processor performance, microarchitects seek to increase the effective instruction level parallelism (ILP) that can be exploited in applications. A fundamental limit to improving ILP is data dependences among instructions. If data dependence information is available at run-time, there are many uses to improve ILP. Prior published examples include decoupled branch execution architectures and critical instruction detection. In this paper, we describe an efficient hardware mechanism to dynamically track the data dependence chains of the instructions in the pipeline. This information is available on a cycle-by-cycle basis to the microengine for optimizing its performance. We then use this design in a new value-based branch prediction design using available register value information (ARVI). From the use of data dependence information, the ARVI branch predictor has better prediction accuracy over a comparably sized hybrid branch predictor With ARVI used as the second-level branch predictor the improved prediction accuracy results in a 12.6% performance improvement on average across the SPEC95 integer benchmark suite.
动态数据依赖跟踪及其在分支预测中的应用
为了继续提高处理器性能,微架构师寻求增加应用程序中可以利用的有效指令级并行性(ILP)。改善ILP的一个基本限制是指令之间的数据依赖性。如果数据依赖性信息在运行时可用,那么就有很多方法可以改进ILP。先前发布的示例包括解耦分支执行架构和关键指令检测。在本文中,我们描述了一种有效的硬件机制来动态跟踪管道中指令的数据依赖链。这些信息可以在每个循环的基础上提供给微引擎,以优化其性能。然后,我们使用可用的寄存器值信息(ARVI)在新的基于值的分支预测设计中使用该设计。从数据依赖信息的使用来看,ARVI分支预测器比同等大小的混合分支预测器具有更好的预测精度。使用ARVI作为第二级分支预测器,改进的预测精度在SPEC95整数基准套件中平均提高了12.6%的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信