Adapting Market-Oriented Policies for Scheduling Divisible Loads on Clouds

M. L. A. Majid, S. Chuprat
{"title":"Adapting Market-Oriented Policies for Scheduling Divisible Loads on Clouds","authors":"M. L. A. Majid, S. Chuprat","doi":"10.4018/ijdst.2020040104","DOIUrl":null,"url":null,"abstract":"Cloud computing has become an important alternative for solving big data processing. Nowadays, cloud service providers usually offer users a virtual machine with various combinations of prices. As each user has different circumstances, the problem of choosing the cost-minimized combination under a deadline constraint as well as user's preference is becoming more complex. This article is concerned with the investigation of adapting a user's preference policies for scheduling real-time divisible loads in a cloud computing environment. The workload allocation approach used in this research is using Divisible Load Theory. The proposed algorithm aggregates resources into groups and optimally distributes the fractions of load to the available resources according to user's preference. The proposed algorithm was evaluated by simulation experiments and compared with the baseline approach. The result obtained from the proposed algorithm reveals that a significant reduction in computation cost can be attained when the user's preferences are low priority.","PeriodicalId":118536,"journal":{"name":"Int. J. Distributed Syst. Technol.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Distributed Syst. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdst.2020040104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Cloud computing has become an important alternative for solving big data processing. Nowadays, cloud service providers usually offer users a virtual machine with various combinations of prices. As each user has different circumstances, the problem of choosing the cost-minimized combination under a deadline constraint as well as user's preference is becoming more complex. This article is concerned with the investigation of adapting a user's preference policies for scheduling real-time divisible loads in a cloud computing environment. The workload allocation approach used in this research is using Divisible Load Theory. The proposed algorithm aggregates resources into groups and optimally distributes the fractions of load to the available resources according to user's preference. The proposed algorithm was evaluated by simulation experiments and compared with the baseline approach. The result obtained from the proposed algorithm reveals that a significant reduction in computation cost can be attained when the user's preferences are low priority.
适应面向市场的云负载调度策略
云计算已经成为解决大数据处理的重要替代方案。如今,云服务提供商通常为用户提供具有各种价格组合的虚拟机。由于每个用户所处的环境不同,在期限约束和用户偏好下选择成本最小的组合的问题变得越来越复杂。本文研究如何在云计算环境中调整用户的偏好策略来调度实时可分负载。本研究使用的负载分配方法是可分负载理论。该算法将资源聚合成组,并根据用户的偏好将负载的各个部分最优地分配给可用资源。通过仿真实验对该算法进行了评价,并与基线方法进行了比较。结果表明,当用户偏好的优先级较低时,算法可以显著降低计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信