Two hybrid and non-hybrid methods for solving fuzzy integral equations based on Bernoulli polynomials

R. Ezzati, S. Sadatrasoul
{"title":"Two hybrid and non-hybrid methods for solving fuzzy integral equations based on Bernoulli polynomials","authors":"R. Ezzati, S. Sadatrasoul","doi":"10.5899/2016/JFSVA-00278","DOIUrl":null,"url":null,"abstract":"In this paper, our aim is to provide two hybrid and non-hybrid efficient method based on non-orthogonal Bernoulli polynomials to approximate solution of linear fuzzy Fredholm integral equations. At first, using Bernoulli basis polynomials and also combining them with known block-pulse functions, we convert the fuzzy integral equations to two algebraic systems. The convergence and error estimates of the methods is also given. Finally, we present some illustrative examples and compare the numerical computational results to confirm the theoretical topics and demonstrate the convergence rate of the methods.","PeriodicalId":308518,"journal":{"name":"Journal of Fuzzy Set Valued Analysis","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fuzzy Set Valued Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5899/2016/JFSVA-00278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, our aim is to provide two hybrid and non-hybrid efficient method based on non-orthogonal Bernoulli polynomials to approximate solution of linear fuzzy Fredholm integral equations. At first, using Bernoulli basis polynomials and also combining them with known block-pulse functions, we convert the fuzzy integral equations to two algebraic systems. The convergence and error estimates of the methods is also given. Finally, we present some illustrative examples and compare the numerical computational results to confirm the theoretical topics and demonstrate the convergence rate of the methods.
基于伯努利多项式的模糊积分方程的两种混合和非混合求解方法
本文的目的是提供两种基于非正交伯努利多项式的混合和非混合的有效方法来近似求解线性模糊Fredholm积分方程。首先,利用伯努利基多项式,并结合已知的块脉冲函数,将模糊积分方程转化为两个代数系统。给出了该方法的收敛性和误差估计。最后,通过算例和数值计算结果的比较,验证了理论结论和方法的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信