Quantum algorithms for element distinctness

H. Buhrman, C. Dürr, M. Heiligman, P. Høyer, F. Magniez, M. Santha, R. D. Wolf
{"title":"Quantum algorithms for element distinctness","authors":"H. Buhrman, C. Dürr, M. Heiligman, P. Høyer, F. Magniez, M. Santha, R. D. Wolf","doi":"10.1137/S0097539702402780","DOIUrl":null,"url":null,"abstract":"We present several applications of quantum amplitude amplification to finding claws and collisions in ordered or unordered functions. Our algorithms generalize those of Brassard, Hoyer, and Tapp (1998), and imply an O(N/sup 3/4/ log N) quantum upper bound for the element distinctness problem in the comparison complexity model. This contrasts with /spl Theta/(N log N) classical complexity. We also prove a lower bound of /spl Omega/(/spl radic/N) comparisons for this problem and derive bounds for a number of related problems.","PeriodicalId":240268,"journal":{"name":"Proceedings 16th Annual IEEE Conference on Computational Complexity","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"183","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 16th Annual IEEE Conference on Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/S0097539702402780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 183

Abstract

We present several applications of quantum amplitude amplification to finding claws and collisions in ordered or unordered functions. Our algorithms generalize those of Brassard, Hoyer, and Tapp (1998), and imply an O(N/sup 3/4/ log N) quantum upper bound for the element distinctness problem in the comparison complexity model. This contrasts with /spl Theta/(N log N) classical complexity. We also prove a lower bound of /spl Omega/(/spl radic/N) comparisons for this problem and derive bounds for a number of related problems.
元素独特性的量子算法
我们介绍了量子振幅放大在寻找有序或无序函数中的爪和碰撞中的几个应用。我们的算法推广了Brassard, Hoyer和Tapp(1998)的算法,并暗示了比较复杂性模型中元素独特性问题的O(N/sup 3/4/ log N)量子上界。这与/spl Theta/(N log N)的经典复杂度形成对比。我们还证明了这个问题的/spl ω /(/spl径向/N)比较的下界,并导出了一些相关问题的下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信