The ellipsoid algorithm for linear inequalities in exact arithmetic

S. Ursic
{"title":"The ellipsoid algorithm for linear inequalities in exact arithmetic","authors":"S. Ursic","doi":"10.1109/SFCS.1982.44","DOIUrl":null,"url":null,"abstract":"A modification of the ellipsoid algorithm is shown to be capable of testing for satisfiability a system of linear equations and inequalities with integer coefficients of the form Ax = b, x ≥ 0. All the rational arithmetic is performed exactly, without losing polynomiality of the computing time. In case of satisfiability, the approach always provides a rational feasible point. The bulk of the computations consists of a sequence of linear least squares problems, each a rank one modification of the preceding one. The continued fractions jump is used to compute some of the coordinates of a feasible point.","PeriodicalId":127919,"journal":{"name":"23rd Annual Symposium on Foundations of Computer Science (sfcs 1982)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1982-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"23rd Annual Symposium on Foundations of Computer Science (sfcs 1982)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1982.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A modification of the ellipsoid algorithm is shown to be capable of testing for satisfiability a system of linear equations and inequalities with integer coefficients of the form Ax = b, x ≥ 0. All the rational arithmetic is performed exactly, without losing polynomiality of the computing time. In case of satisfiability, the approach always provides a rational feasible point. The bulk of the computations consists of a sequence of linear least squares problems, each a rank one modification of the preceding one. The continued fractions jump is used to compute some of the coordinates of a feasible point.
求解线性不等式的椭球算法
对椭球算法的一种改进,证明了该算法能够检验形式为Ax = b, x≥0的整数系数线性方程组和不等式的可满足性。所有的有理数运算都精确地执行,而不损失计算时间的多项式性。在可满足性的情况下,该方法总是提供一个合理的可行点。大部分计算由一系列线性最小二乘问题组成,每个问题都是前一个问题的第一个修改。用连分式跳跃来计算可行点的一些坐标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信