Non-Orthogonal Multiple Access: The Case of Improper Gaussian Signaling and Imperfect Successive Interference Cancellation

Islam Abu Mahady, E. Bedeer, S. Ikki
{"title":"Non-Orthogonal Multiple Access: The Case of Improper Gaussian Signaling and Imperfect Successive Interference Cancellation","authors":"Islam Abu Mahady, E. Bedeer, S. Ikki","doi":"10.3389/frcmn.2022.821037","DOIUrl":null,"url":null,"abstract":"This paper studies a two-user downlink non-orthogonal multiple access (NOMA) system that adopts an improper Gaussian signaling (IGS) strategy to compensate for the performance loss due to imperfect successive interference cancellation (SIC). Joint optimization problems are formulated to maximize the overall spectral efficiency and energy efficiency of a two-user NOMA system under minimum user-rate requirements and total power constraints. Sub-optimal solutions of IGS circularity coefficients and power allocation are obtained for the formulated problems. Furthermore, improper constellation diagrams are designed using widely linear transformation with predefined optimized IGS coefficients to study the impact of IGS on throughput and error performance. Simulation results show that the performance of IGS-based NOMA systems, where the IGS strategy is adopted by both users, outperforms that of the proper Gaussian signal (PGS)-based NOMA system under imperfect SIC.","PeriodicalId":106247,"journal":{"name":"Frontiers in Communications and Networks","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Communications and Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frcmn.2022.821037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies a two-user downlink non-orthogonal multiple access (NOMA) system that adopts an improper Gaussian signaling (IGS) strategy to compensate for the performance loss due to imperfect successive interference cancellation (SIC). Joint optimization problems are formulated to maximize the overall spectral efficiency and energy efficiency of a two-user NOMA system under minimum user-rate requirements and total power constraints. Sub-optimal solutions of IGS circularity coefficients and power allocation are obtained for the formulated problems. Furthermore, improper constellation diagrams are designed using widely linear transformation with predefined optimized IGS coefficients to study the impact of IGS on throughput and error performance. Simulation results show that the performance of IGS-based NOMA systems, where the IGS strategy is adopted by both users, outperforms that of the proper Gaussian signal (PGS)-based NOMA system under imperfect SIC.
非正交多址:不正确高斯信号和不完全连续干扰抵消的情况
本文研究了一种双用户下行非正交多址(NOMA)系统,该系统采用不正确的高斯信令(IGS)策略来补偿不完全连续干扰抵消(SIC)造成的性能损失。为了在最小用户速率要求和总功率约束下实现双用户NOMA系统频谱效率和能量效率的最大化,提出了联合优化问题。对所提出的问题得到了IGS圆度系数和功率分配的次优解。在此基础上,利用广义线性变换和预定义的优化IGS系数设计了不合理的星座图,研究了IGS对吞吐量和误差性能的影响。仿真结果表明,在不完全SIC条件下,采用IGS策略的基于IGS的NOMA系统的性能优于基于PGS的NOMA系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信