Multi-exposure image fusion for dynamic scenes without ghost effect

Ashish V. Vanmali, Samrudha G. Kelkar, V. Gadre
{"title":"Multi-exposure image fusion for dynamic scenes without ghost effect","authors":"Ashish V. Vanmali, Samrudha G. Kelkar, V. Gadre","doi":"10.1109/NCC.2015.7084823","DOIUrl":null,"url":null,"abstract":"Fusion of multi-exposure images for dynamic scenes often show ghost effect. This is mainly due to motion blur present in the image sequences or due to presence of totally new object. Detection and removal of such ghost effect plays an important role for automatically generating HDR images of dynamic scenes. In this paper, we present a simple, yet effective method for multi-exposure image fusion for dynamic scenes with new objects without ghost effect. The proposed method is carried out in four steps, viz.: weight map generation, new object detection, modification of weight maps and finally exposure fusion using modified weight maps. The experimental result show that our method produce HDR images without noticeable ghost effect.","PeriodicalId":302718,"journal":{"name":"2015 Twenty First National Conference on Communications (NCC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Twenty First National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2015.7084823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Fusion of multi-exposure images for dynamic scenes often show ghost effect. This is mainly due to motion blur present in the image sequences or due to presence of totally new object. Detection and removal of such ghost effect plays an important role for automatically generating HDR images of dynamic scenes. In this paper, we present a simple, yet effective method for multi-exposure image fusion for dynamic scenes with new objects without ghost effect. The proposed method is carried out in four steps, viz.: weight map generation, new object detection, modification of weight maps and finally exposure fusion using modified weight maps. The experimental result show that our method produce HDR images without noticeable ghost effect.
多曝光图像融合动态场景无鬼效果
动态场景的多曝光图像融合往往会出现鬼影效果。这主要是由于图像序列中的运动模糊或由于全新物体的存在。这种鬼影效应的检测和去除对于动态场景的HDR图像自动生成具有重要的意义。本文提出了一种简单而有效的动态场景多曝光图像融合方法。该方法分为权重图生成、新目标检测、权重图修改以及使用修改后的权重图进行曝光融合四个步骤。实验结果表明,该方法产生的HDR图像没有明显的鬼影效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信