Concurrent Realizability on Conjunctive Structures

E. Beffara, F'elix Castro, Mauricio Guillermo
{"title":"Concurrent Realizability on Conjunctive Structures","authors":"E. Beffara, F'elix Castro, Mauricio Guillermo","doi":"10.4230/LIPIcs.FSCD.2023.28","DOIUrl":null,"url":null,"abstract":"The point of this work is to explore axiomatisations of concurrent computation using the technology of proof theory and realizability. To deal with this problem, we redefine the Concurrent Realizability of Beffara using as realizers a $\\pi$-calculus with global fusions. We define a variant of the Conjunctive Structures of \\'E Miquey as a general structure where belong realizers and truth values from realizability. As for Secuential Realizability, we encode the realizers into the algebraic structure by means of a combinatory presentation, following the work of Honda&Yoshida. In this first work we restricted to work with the $\\pi$-calculus without replication and its corresponding type system is the multiplicative linear logic (MLL).","PeriodicalId":284975,"journal":{"name":"International Conference on Formal Structures for Computation and Deduction","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Formal Structures for Computation and Deduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.FSCD.2023.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The point of this work is to explore axiomatisations of concurrent computation using the technology of proof theory and realizability. To deal with this problem, we redefine the Concurrent Realizability of Beffara using as realizers a $\pi$-calculus with global fusions. We define a variant of the Conjunctive Structures of \'E Miquey as a general structure where belong realizers and truth values from realizability. As for Secuential Realizability, we encode the realizers into the algebraic structure by means of a combinatory presentation, following the work of Honda&Yoshida. In this first work we restricted to work with the $\pi$-calculus without replication and its corresponding type system is the multiplicative linear logic (MLL).
连接结构的并发可实现性
本工作的重点是利用证明理论和可实现性技术探索并发计算的公理化。为了解决这个问题,我们重新定义了Beffara的并发可实现性,使用具有全局融合的$\pi$-微积分作为实现器。我们将E Miquey的连接结构的一个变体定义为属于实现者和可实现性的真值的一般结构。在顺序可实现性方面,我们继承了honda和yoshida的工作,通过组合表示的方式将实现器编码到代数结构中。在第一篇文章中,我们限制了$\pi$-演算的工作,而它对应的类型系统是乘法线性逻辑(MLL)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信