Profiling and Optimization of CT Reconstruction on Nvidia Quadro GV100

S. Dwivedi, Andreas Heumann
{"title":"Profiling and Optimization of CT Reconstruction on Nvidia Quadro GV100","authors":"S. Dwivedi, Andreas Heumann","doi":"10.1109/HPEC43674.2020.9286223","DOIUrl":null,"url":null,"abstract":"Computed Tomography (CT) Imaging is a widely used technique for medical and industrial applications. Iterative reconstruction algorithms are desired for improved reconstructed image quality and lower dose, but its computational requirements limit its practical usage. Reconstruction toolkit (RTK) is a package of open source GPU accelerated algorithms for CBCT (cone beam computed tomography). GPU based iterative algorithms gives immense acceleration, but it may not be optimized to use the GPU resources efficiently. Nvidia has released several profilers (Nsight-systems, Nsight-compute) to analyze the GPU implementation of an algorithm from compute utilization and memory efficiency perspective. This paper profiles and analyzes the GPU implementation of iterative FDK algorithm in RTK and optimizes it for computation and memory usage on a Quadro GV100 GPU with 32 GB of memory and over 5000 cuda cores. RTK based GPU accelerated iterative FDK when applied on a 4 byte per pixel input projection dataset of size 1.1 GB (512×512×1024) for 20 iterations, to reconstruct a volume of size 440 MB (512×512×441) with 4 byte per pixel, resulted in total runtime of ~11.2 seconds per iteration. Optimized RTK based iterative FDK presented in this paper took ~1.3 seconds per iteration.","PeriodicalId":168544,"journal":{"name":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC43674.2020.9286223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Computed Tomography (CT) Imaging is a widely used technique for medical and industrial applications. Iterative reconstruction algorithms are desired for improved reconstructed image quality and lower dose, but its computational requirements limit its practical usage. Reconstruction toolkit (RTK) is a package of open source GPU accelerated algorithms for CBCT (cone beam computed tomography). GPU based iterative algorithms gives immense acceleration, but it may not be optimized to use the GPU resources efficiently. Nvidia has released several profilers (Nsight-systems, Nsight-compute) to analyze the GPU implementation of an algorithm from compute utilization and memory efficiency perspective. This paper profiles and analyzes the GPU implementation of iterative FDK algorithm in RTK and optimizes it for computation and memory usage on a Quadro GV100 GPU with 32 GB of memory and over 5000 cuda cores. RTK based GPU accelerated iterative FDK when applied on a 4 byte per pixel input projection dataset of size 1.1 GB (512×512×1024) for 20 iterations, to reconstruct a volume of size 440 MB (512×512×441) with 4 byte per pixel, resulted in total runtime of ~11.2 seconds per iteration. Optimized RTK based iterative FDK presented in this paper took ~1.3 seconds per iteration.
基于Nvidia Quadro GV100的CT重构分析与优化
计算机断层扫描(CT)成像是一种广泛应用于医疗和工业应用的技术。迭代重建算法是提高重建图像质量和降低重建剂量的理想算法,但其计算量限制了其实际应用。重建工具包(RTK)是一个开源的GPU加速算法包CBCT(锥束计算机断层扫描)。基于GPU的迭代算法提供了巨大的加速,但它可能无法有效地利用GPU资源。Nvidia已经发布了几个分析器(Nsight-systems, Nsight-compute)来从计算利用率和内存效率的角度分析算法的GPU实现。本文对迭代FDK算法在RTK中的GPU实现进行了概述和分析,并对其在32gb内存、5000 cuda以上内核的Quadro GV100 GPU上的计算和内存使用进行了优化。基于RTK的GPU加速迭代FDK,当应用于大小为1.1 GB (512×512×1024)的4字节/像素输入投影数据集上,进行20次迭代,以每像素4字节重建大小为440 MB (512×512×441)的体积时,每次迭代的总运行时间约为11.2秒。本文提出的优化的基于RTK的迭代FDK每次迭代耗时约1.3秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信