Monitoring of a thermoelectric power plant based on multivariate statistical process control

Joyce M. F. Fonseca, Bruno M. Sousa, Webber E. Aguiar, A. R. Braga, A. Lemos, Hugo C. C. Michel, C. Braga
{"title":"Monitoring of a thermoelectric power plant based on multivariate statistical process control","authors":"Joyce M. F. Fonseca, Bruno M. Sousa, Webber E. Aguiar, A. R. Braga, A. Lemos, Hugo C. C. Michel, C. Braga","doi":"10.1109/EAIS.2016.7502371","DOIUrl":null,"url":null,"abstract":"Thermoelectric power plants have critical units, such as the boiler and the turbine-generator, which are complex multivariate systems. These units exhibit non-stationary behavior and multiple operational modes that imply constant changes of set points of key performance variables. A methodology based on MSPC (Multivariate Statistical Process Control) techniques and PCA (Principal Component Analysis) is presented with an adaptive mean estimator that deals with frequent changes of set points, both for design and just in time monitoring. The proposed methodology is implemented in a thermoelectric power plant using a commercial PIMS (Process Information Management System) software suite. Experimental results illustrate and validate the proposition, its just-in-time implementation and usage.","PeriodicalId":303392,"journal":{"name":"2016 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS)","volume":"246 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EAIS.2016.7502371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Thermoelectric power plants have critical units, such as the boiler and the turbine-generator, which are complex multivariate systems. These units exhibit non-stationary behavior and multiple operational modes that imply constant changes of set points of key performance variables. A methodology based on MSPC (Multivariate Statistical Process Control) techniques and PCA (Principal Component Analysis) is presented with an adaptive mean estimator that deals with frequent changes of set points, both for design and just in time monitoring. The proposed methodology is implemented in a thermoelectric power plant using a commercial PIMS (Process Information Management System) software suite. Experimental results illustrate and validate the proposition, its just-in-time implementation and usage.
基于多元统计过程控制的热电厂监测
火力发电厂的关键机组,如锅炉和汽轮发电机,是一个复杂的多元系统。这些装置表现出非平稳的行为和多种运行模式,这意味着关键性能变量的设定点会不断变化。提出了一种基于MSPC(多元统计过程控制)技术和PCA(主成分分析)的方法,该方法具有自适应均值估计器,可以处理设计和实时监测设定值的频繁变化。提出的方法在热电厂使用商业PIMS(过程信息管理系统)软件套件中实现。实验结果说明并验证了该方法的正确性及其实时实现和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信