K. Kurgan, V. Klimenov, A. Klopotov, Yurii A. Abzaev, A. Potekaev, D. Lychagin, M. Marzol
{"title":"Weakly Stable Structural-Phase States of a Submicrocrystalline Alloy Grade 2 in the Weld Zone Obtained Using Electron-Beam Welding","authors":"K. Kurgan, V. Klimenov, A. Klopotov, Yurii A. Abzaev, A. Potekaev, D. Lychagin, M. Marzol","doi":"10.4028/www.scientific.net/JMNM.30.60","DOIUrl":null,"url":null,"abstract":"The structural-phase state of weld joints of the samples of Grade 2 alloys with micro- and submicrocrystalline structure is studied using methods of X-ray diffraction analysis. The weld joint was obtained by joining plates with a thickness of 2 mm using the electron-beam welding method. It is established that the transfer of the titanium alloy Grade 2 from the microcrystalline state into the submicrocrystalline state during the process of gradual grinding of grains in the samples by the abc-pressing method at a parallel stepwise decrease of the temperature in the range of 750-500 °C leads to an intensive introduction of oxygen atoms into the crystalline lattice of the solid solution a-Ti. The presence of an increased content of oxygen atoms in the crystalline lattice of the solid solution a-Ti in the submicrocrystalline state in the Grade 2 alloy in the weld zone and in the heat-affected zone promotes the formation of metastable phases w-Ti and α''-Ti. The obtained results made it possible to assume that in the process of electron-beam welding in the Grade 2 alloy in the submicrocrystalline state, an increased concentration of interstitial oxygen atoms in the crystalline lattice of the solid solution based on a–Ti plays a significant role in the formation of a wide range of structural-phase states in the weld zone and in the heat-affected zone.","PeriodicalId":177608,"journal":{"name":"Journal of Metastable and Nanocrystalline Materials","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Metastable and Nanocrystalline Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/JMNM.30.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The structural-phase state of weld joints of the samples of Grade 2 alloys with micro- and submicrocrystalline structure is studied using methods of X-ray diffraction analysis. The weld joint was obtained by joining plates with a thickness of 2 mm using the electron-beam welding method. It is established that the transfer of the titanium alloy Grade 2 from the microcrystalline state into the submicrocrystalline state during the process of gradual grinding of grains in the samples by the abc-pressing method at a parallel stepwise decrease of the temperature in the range of 750-500 °C leads to an intensive introduction of oxygen atoms into the crystalline lattice of the solid solution a-Ti. The presence of an increased content of oxygen atoms in the crystalline lattice of the solid solution a-Ti in the submicrocrystalline state in the Grade 2 alloy in the weld zone and in the heat-affected zone promotes the formation of metastable phases w-Ti and α''-Ti. The obtained results made it possible to assume that in the process of electron-beam welding in the Grade 2 alloy in the submicrocrystalline state, an increased concentration of interstitial oxygen atoms in the crystalline lattice of the solid solution based on a–Ti plays a significant role in the formation of a wide range of structural-phase states in the weld zone and in the heat-affected zone.