Acceleration of finite element method for 3D DC resistivity modeling using multi-GPU

Hairil Anwar, A. I. Kistijantoro
{"title":"Acceleration of finite element method for 3D DC resistivity modeling using multi-GPU","authors":"Hairil Anwar, A. I. Kistijantoro","doi":"10.1109/ICITSI.2016.7858236","DOIUrl":null,"url":null,"abstract":"In this paper finite element method for 3D DC resistivity modeling accelerated using multi-GPU (Graphics Processing Unit). Solution of the large system of linear equations is the most expensive computation in finite element method performed in GPUs to reduce the computational time. Conjugate gradient solver used to solve large system of linear equations. We developed kernel for conjugate gradient solver that exploit data vectorization and written in PTX assembly form. We perform test on GTX 750Ti GPU and Tesla C2050 GPU. Our kernel have better sparse matrix-vector performance than CUSPARSE library in the first GPU, but lower performance in the latter GPU. The performance comparisons to the library are about 1.4 times and 0.7 times respectively. Our multi-GPU implementation achieved about 1.9 times performance of single GPU by using 2 identical GPUs. In comparison to the serial CPU implementation, about 10 times speedup could be achieved by using 2 GPUs.","PeriodicalId":172314,"journal":{"name":"2016 International Conference on Information Technology Systems and Innovation (ICITSI)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Information Technology Systems and Innovation (ICITSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITSI.2016.7858236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper finite element method for 3D DC resistivity modeling accelerated using multi-GPU (Graphics Processing Unit). Solution of the large system of linear equations is the most expensive computation in finite element method performed in GPUs to reduce the computational time. Conjugate gradient solver used to solve large system of linear equations. We developed kernel for conjugate gradient solver that exploit data vectorization and written in PTX assembly form. We perform test on GTX 750Ti GPU and Tesla C2050 GPU. Our kernel have better sparse matrix-vector performance than CUSPARSE library in the first GPU, but lower performance in the latter GPU. The performance comparisons to the library are about 1.4 times and 0.7 times respectively. Our multi-GPU implementation achieved about 1.9 times performance of single GPU by using 2 identical GPUs. In comparison to the serial CPU implementation, about 10 times speedup could be achieved by using 2 GPUs.
基于多gpu的直流电阻率三维建模有限元加速研究
本文采用多图形处理器加速了三维直流电阻率有限元建模。为了减少计算时间,在gpu上求解大型线性方程组是有限元法中最昂贵的计算环节。用于求解大型线性方程组的共轭梯度求解器。我们开发了利用数据向量化的共轭梯度求解器内核,并以PTX汇编形式编写。在GTX 750Ti GPU和Tesla C2050 GPU上进行了测试。我们的内核在第一个GPU上比CUSPARSE库具有更好的稀疏矩阵向量性能,但在后一个GPU上性能较低。与库的性能比较分别约为1.4倍和0.7倍。我们的多GPU实现通过使用2个相同的GPU实现了约1.9倍的单GPU性能。与串行CPU实现相比,使用2个gpu可以实现大约10倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信