Nearest neighbor search on multimedia indexing structures

T. Seidl
{"title":"Nearest neighbor search on multimedia indexing structures","authors":"T. Seidl","doi":"10.1145/1039470.1039474","DOIUrl":null,"url":null,"abstract":"Multimedia databases get larger and larger in our days, and this trend is expected to continue in the future. There are various aspects that affect the demand for efficient database techniques to manage the flood of multimedia data, namely the increasing number of objects, the increasing complexity of objects, and the emergence of new query types. Whereas traditional indexing structures cope with large numbers of simple objects, complex multimedia objects require more sophisticated indexing techniques. In the tutorial, we discuss characteristics of multimedia data and multimedia queries including similarity range queries and k-nearest neighbor queries. The main focus is on efficient processing of k-NN queries in various settings and includes direct k-NN search on indexes, multi-step k-NN query processing for complex distance functions and methods for high-dimensional spaces.","PeriodicalId":346313,"journal":{"name":"Computer Vision meets Databases","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision meets Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1039470.1039474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Multimedia databases get larger and larger in our days, and this trend is expected to continue in the future. There are various aspects that affect the demand for efficient database techniques to manage the flood of multimedia data, namely the increasing number of objects, the increasing complexity of objects, and the emergence of new query types. Whereas traditional indexing structures cope with large numbers of simple objects, complex multimedia objects require more sophisticated indexing techniques. In the tutorial, we discuss characteristics of multimedia data and multimedia queries including similarity range queries and k-nearest neighbor queries. The main focus is on efficient processing of k-NN queries in various settings and includes direct k-NN search on indexes, multi-step k-NN query processing for complex distance functions and methods for high-dimensional spaces.
多媒体索引结构的最近邻搜索
多媒体数据库在我们的时代变得越来越大,并且这种趋势预计将在未来继续下去。有许多方面影响着对高效数据库技术的需求,以管理大量的多媒体数据,即对象数量的增加、对象复杂性的增加以及新查询类型的出现。传统的索引结构可以处理大量的简单对象,而复杂的多媒体对象需要更复杂的索引技术。在本教程中,我们将讨论多媒体数据和多媒体查询的特征,包括相似范围查询和k近邻查询。主要重点是在各种设置下k-NN查询的有效处理,包括对索引的直接k-NN搜索,复杂距离函数的多步k-NN查询处理以及高维空间的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信