Visual-inertial navigation with guaranteed convergence

F. Di Corato, M. Innocenti, L. Pollini
{"title":"Visual-inertial navigation with guaranteed convergence","authors":"F. Di Corato, M. Innocenti, L. Pollini","doi":"10.1109/WORV.2013.6521930","DOIUrl":null,"url":null,"abstract":"This contribution presents a constraints-based loosely-coupled Augmented Implicit Kalman Filter approach to vision-aided inertial navigation that uses epipolar constraints as output map. The proposed approach is capable of estimating the standard navigation output (velocity, position and attitude) together with inertial sensor biases. An observability analysis is proposed in order to define the motion requirements for full observability of the system and asymptotic convergence of the parameter estimations. Simulations are presented to support the theoretical conclusions.","PeriodicalId":130461,"journal":{"name":"2013 IEEE Workshop on Robot Vision (WORV)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Workshop on Robot Vision (WORV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WORV.2013.6521930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This contribution presents a constraints-based loosely-coupled Augmented Implicit Kalman Filter approach to vision-aided inertial navigation that uses epipolar constraints as output map. The proposed approach is capable of estimating the standard navigation output (velocity, position and attitude) together with inertial sensor biases. An observability analysis is proposed in order to define the motion requirements for full observability of the system and asymptotic convergence of the parameter estimations. Simulations are presented to support the theoretical conclusions.
具有保证收敛性的视觉惯性导航
这一贡献提出了一种基于约束的松耦合增强隐式卡尔曼滤波方法用于视觉辅助惯性导航,该方法使用极外约束作为输出映射。该方法能够估计标准导航输出(速度、位置和姿态)以及惯性传感器偏差。为了确定系统完全可观察性和参数估计渐近收敛的运动要求,提出了可观察性分析方法。仿真结果支持了理论结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信