Benchmarking Different MapReduce Implementations for Computer-Aided Hardware Development

Milan Schomig, David Neuhauser, Ralf Seidler, H. M. Bucker
{"title":"Benchmarking Different MapReduce Implementations for Computer-Aided Hardware Development","authors":"Milan Schomig, David Neuhauser, Ralf Seidler, H. M. Bucker","doi":"10.1109/MCSI.2014.57","DOIUrl":null,"url":null,"abstract":"In the design of fast arithmetic circuits, the two's complement number representation can be alternatively replaced by a signed digit number representation. Compared to standard full adders used in two's complement arithmetic, signed digit adder cells offer the potential for improved performance. Designing an efficient signed digit adder cell leads to the problem of analyzing 2 to the power of 44 truth tables originating from different signed digit encodings. Since different digit encodings can produce identical truth tables, it is favorable to reduce this large number of truth tables by identifying identical ones. We introduce a novel approach for the solution of this problem using the MapReduce programming model. We take a step towards solving this problem using three different implementations of MapReduce (Hadoop, Disco, and MR-MPI) and compare their performance on an Opteron-based cluster using up to 64 physical cores.","PeriodicalId":202841,"journal":{"name":"2014 International Conference on Mathematics and Computers in Sciences and in Industry","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Mathematics and Computers in Sciences and in Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSI.2014.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the design of fast arithmetic circuits, the two's complement number representation can be alternatively replaced by a signed digit number representation. Compared to standard full adders used in two's complement arithmetic, signed digit adder cells offer the potential for improved performance. Designing an efficient signed digit adder cell leads to the problem of analyzing 2 to the power of 44 truth tables originating from different signed digit encodings. Since different digit encodings can produce identical truth tables, it is favorable to reduce this large number of truth tables by identifying identical ones. We introduce a novel approach for the solution of this problem using the MapReduce programming model. We take a step towards solving this problem using three different implementations of MapReduce (Hadoop, Disco, and MR-MPI) and compare their performance on an Opteron-based cluster using up to 64 physical cores.
计算机辅助硬件开发中不同MapReduce实现的基准测试
在快速算术电路的设计中,可以用有符号数字表示替代二补数表示。与二进制补数算法中使用的标准全加法器相比,符号数字加法器单元提供了改进性能的潜力。设计一个有效的有符号数字加法器单元导致了分析2的44次真值表的问题,这些真值表来自不同的有符号数字编码。由于不同的数字编码可以产生相同的真值表,因此通过识别相同的真值表来减少大量的真值表是有利的。我们引入了一种新的方法来解决这个问题,使用MapReduce编程模型。我们使用三种不同的MapReduce实现(Hadoop, Disco和MR-MPI)来解决这个问题,并比较它们在基于opteron的集群上使用多达64个物理内核的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信