The GTM-UVIGO System for Albayzin 2018 Speech-to-Text Evaluation

Laura Docío Fernández, C. García-Mateo
{"title":"The GTM-UVIGO System for Albayzin 2018 Speech-to-Text Evaluation","authors":"Laura Docío Fernández, C. García-Mateo","doi":"10.21437/IBERSPEECH.2018-58","DOIUrl":null,"url":null,"abstract":"This paper describes the Speech-to-Text system developed by the Multimedia Technologies Group (GTM) of the atlanTTic research center at the University of Vigo, for the Albayzin Speech-to-Text Challenge (S2T) organized in the Iberspeech 2018 conference. The large vocabulary automatic speech recognition system is built using the Kaldi toolkit. It uses an hybrid Deep Neural Network - Hidden Markov Model (DNN-HMM) for acoustic modeling, and a rescoring of a trigram based word-lattices, obtained in a first decoding stage, with a fourgram language model or a language model based on a recurrent neural network. The system was evaluated only on the open set training condition.","PeriodicalId":115963,"journal":{"name":"IberSPEECH Conference","volume":"302 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IberSPEECH Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/IBERSPEECH.2018-58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper describes the Speech-to-Text system developed by the Multimedia Technologies Group (GTM) of the atlanTTic research center at the University of Vigo, for the Albayzin Speech-to-Text Challenge (S2T) organized in the Iberspeech 2018 conference. The large vocabulary automatic speech recognition system is built using the Kaldi toolkit. It uses an hybrid Deep Neural Network - Hidden Markov Model (DNN-HMM) for acoustic modeling, and a rescoring of a trigram based word-lattices, obtained in a first decoding stage, with a fourgram language model or a language model based on a recurrent neural network. The system was evaluated only on the open set training condition.
Albayzin 2018语音到文本评价的GTM-UVIGO系统
本文描述了由维戈大学大西洋研究中心的多媒体技术小组(GTM)为Iberspeech 2018会议组织的Albayzin语音到文本挑战(S2T)开发的语音到文本系统。利用Kaldi工具箱构建了大词汇自动语音识别系统。它使用混合深度神经网络-隐马尔可夫模型(DNN-HMM)进行声学建模,并使用四格语言模型或基于循环神经网络的语言模型对在第一解码阶段获得的基于三格的词格进行重新评分。系统仅在开放集训练条件下进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信