Automatic visual inspection of wood surfaces

Pertti Alapuranen, T. Westman
{"title":"Automatic visual inspection of wood surfaces","authors":"Pertti Alapuranen, T. Westman","doi":"10.1109/ICPR.1992.201578","DOIUrl":null,"url":null,"abstract":"A prototype software system for visual inspection of wood defects has been developed. The system uses a hierarchical vector connected components (HVCC) segmentation which can be described as a multistage region-growing type of segmentation. The HVCC version used in experiments uses RGB color vector differences and Euclidean metrics. The HVCC segmentation seems to be very suitable for wood surface image segmentation. Geometrical, color and structural features are used in classification. Possible defects are classified using combined tree-kNN classifier and pure kNN-classifier. The system has been tested using plywood boards. Preliminary classification accuracy is 85-90% depending on the type of defect.<<ETX>>","PeriodicalId":410961,"journal":{"name":"[1992] Proceedings. 11th IAPR International Conference on Pattern Recognition","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings. 11th IAPR International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.1992.201578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

A prototype software system for visual inspection of wood defects has been developed. The system uses a hierarchical vector connected components (HVCC) segmentation which can be described as a multistage region-growing type of segmentation. The HVCC version used in experiments uses RGB color vector differences and Euclidean metrics. The HVCC segmentation seems to be very suitable for wood surface image segmentation. Geometrical, color and structural features are used in classification. Possible defects are classified using combined tree-kNN classifier and pure kNN-classifier. The system has been tested using plywood boards. Preliminary classification accuracy is 85-90% depending on the type of defect.<>
自动目视检查木材表面
开发了一种用于木材缺陷目视检测的原型软件系统。该系统采用分层向量连接分量(HVCC)分割,可称为多阶段区域生长型分割。实验中使用的HVCC版本使用RGB颜色矢量差和欧几里得度量。HVCC分割似乎非常适合木材表面图像的分割。几何、颜色和结构特征用于分类。采用组合树- knn分类器和纯knn分类器对可能存在的缺陷进行分类。该系统已使用胶合板进行了测试。根据缺陷的类型,初步分类准确率为85-90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信