Chunpeng Wei, Qian Ge, Somrita Chattopadhyay, E. Lobaton
{"title":"Robust obstacle segmentation based on topological persistence in outdoor traffic scenes","authors":"Chunpeng Wei, Qian Ge, Somrita Chattopadhyay, E. Lobaton","doi":"10.1109/CIVTS.2014.7009483","DOIUrl":null,"url":null,"abstract":"In this paper, a new methodology for robust segmentation of obstacles from stereo disparity maps in an on-road environment is presented. We first construct a probability of the occupancy map using the UV-disparity methodology. Traditionally, a simple threshold has been applied to segment obstacles from the occupancy map based on the connectivity of the resulting regions; however, this outcome is sensitive to the choice of parameter value. In our proposed method, instead of simple thresholding, we perform a topological persistence analysis on the constructed occupancy map. The topological framework hierarchically encodes all possible segmentation results as a function of the threshold, thus we can identify the regions that are most persistent. This leads to a more robust segmentation. The approach is analyzed using real stereo image pairs from standard datasets.","PeriodicalId":283766,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Vehicles and Transportation Systems (CIVTS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Vehicles and Transportation Systems (CIVTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIVTS.2014.7009483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
In this paper, a new methodology for robust segmentation of obstacles from stereo disparity maps in an on-road environment is presented. We first construct a probability of the occupancy map using the UV-disparity methodology. Traditionally, a simple threshold has been applied to segment obstacles from the occupancy map based on the connectivity of the resulting regions; however, this outcome is sensitive to the choice of parameter value. In our proposed method, instead of simple thresholding, we perform a topological persistence analysis on the constructed occupancy map. The topological framework hierarchically encodes all possible segmentation results as a function of the threshold, thus we can identify the regions that are most persistent. This leads to a more robust segmentation. The approach is analyzed using real stereo image pairs from standard datasets.