Robust obstacle segmentation based on topological persistence in outdoor traffic scenes

Chunpeng Wei, Qian Ge, Somrita Chattopadhyay, E. Lobaton
{"title":"Robust obstacle segmentation based on topological persistence in outdoor traffic scenes","authors":"Chunpeng Wei, Qian Ge, Somrita Chattopadhyay, E. Lobaton","doi":"10.1109/CIVTS.2014.7009483","DOIUrl":null,"url":null,"abstract":"In this paper, a new methodology for robust segmentation of obstacles from stereo disparity maps in an on-road environment is presented. We first construct a probability of the occupancy map using the UV-disparity methodology. Traditionally, a simple threshold has been applied to segment obstacles from the occupancy map based on the connectivity of the resulting regions; however, this outcome is sensitive to the choice of parameter value. In our proposed method, instead of simple thresholding, we perform a topological persistence analysis on the constructed occupancy map. The topological framework hierarchically encodes all possible segmentation results as a function of the threshold, thus we can identify the regions that are most persistent. This leads to a more robust segmentation. The approach is analyzed using real stereo image pairs from standard datasets.","PeriodicalId":283766,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Vehicles and Transportation Systems (CIVTS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Vehicles and Transportation Systems (CIVTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIVTS.2014.7009483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper, a new methodology for robust segmentation of obstacles from stereo disparity maps in an on-road environment is presented. We first construct a probability of the occupancy map using the UV-disparity methodology. Traditionally, a simple threshold has been applied to segment obstacles from the occupancy map based on the connectivity of the resulting regions; however, this outcome is sensitive to the choice of parameter value. In our proposed method, instead of simple thresholding, we perform a topological persistence analysis on the constructed occupancy map. The topological framework hierarchically encodes all possible segmentation results as a function of the threshold, thus we can identify the regions that are most persistent. This leads to a more robust segmentation. The approach is analyzed using real stereo image pairs from standard datasets.
基于拓扑持久性的室外交通场景鲁棒障碍物分割
本文提出了一种新的道路环境下立体视差图中障碍物的鲁棒分割方法。我们首先使用uv -视差方法构造占用率图的概率。传统上,基于结果区域的连通性,对占用图中的分段障碍物应用简单的阈值;然而,该结果对参数值的选择很敏感。在我们提出的方法中,我们对构造的占用图执行拓扑持久性分析,而不是简单的阈值划分。拓扑框架分层编码所有可能的分割结果作为阈值的函数,因此我们可以识别最持久的区域。这将导致更稳健的分割。使用标准数据集的真实立体图像对对该方法进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信