Of Bots and Humans (on Twitter)

Z. Gilani, R. Farahbakhsh, Gareth Tyson, Liang Wang, J. Crowcroft
{"title":"Of Bots and Humans (on Twitter)","authors":"Z. Gilani, R. Farahbakhsh, Gareth Tyson, Liang Wang, J. Crowcroft","doi":"10.1145/3110025.3110090","DOIUrl":null,"url":null,"abstract":"Recent research has shown a substantial active presence of bots in online social networks (OSNs). In this paper we utilise our previous work (Stweeler) to comparatively analyse the usage and impact of bots and humans on Twitter, one of the largest OSNs in the world. We collect a large-scale Twitter dataset and define various metrics based on tweet metadata. Using a human annotation task we assign 'bot' and 'human' ground-truth labels to the dataset, and compare the annotations against an online bot detection tool for evaluation. We then ask a series of questions to discern important behavioural characteristics of bots and humans using metrics within and among four popularity groups. From the comparative analysis we draw differences and interesting similarities between the two entities, thus paving the way for reliable classification of bots, and studying automated political infiltration and advertisement campaigns.","PeriodicalId":399660,"journal":{"name":"Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"107","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3110025.3110090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 107

Abstract

Recent research has shown a substantial active presence of bots in online social networks (OSNs). In this paper we utilise our previous work (Stweeler) to comparatively analyse the usage and impact of bots and humans on Twitter, one of the largest OSNs in the world. We collect a large-scale Twitter dataset and define various metrics based on tweet metadata. Using a human annotation task we assign 'bot' and 'human' ground-truth labels to the dataset, and compare the annotations against an online bot detection tool for evaluation. We then ask a series of questions to discern important behavioural characteristics of bots and humans using metrics within and among four popularity groups. From the comparative analysis we draw differences and interesting similarities between the two entities, thus paving the way for reliable classification of bots, and studying automated political infiltration and advertisement campaigns.
机器人和人类(在Twitter上)
最近的研究表明,在线社交网络(OSNs)中存在大量活跃的机器人。在本文中,我们利用我们之前的工作(Stweeler)来比较分析机器人和人类在Twitter上的使用和影响,Twitter是世界上最大的osn之一。我们收集了一个大规模的Twitter数据集,并基于tweet元数据定义了各种指标。使用人工注释任务,我们为数据集分配“bot”和“human”基础事实标签,并将注释与在线机器人检测工具进行比较以进行评估。然后,我们提出了一系列问题,利用四个受欢迎群体内部和群体之间的指标来辨别机器人和人类的重要行为特征。从比较分析中,我们得出了两个实体之间的差异和有趣的相似之处,从而为机器人的可靠分类铺平了道路,并研究了自动化的政治渗透和广告活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信