An Approach for Malicious JavaScript Detection Using Adaptive Taylor Harris Hawks Optimization-Based Deep Convolutional Neural Network

Scaria Alex, T. Rajkumar
{"title":"An Approach for Malicious JavaScript Detection Using Adaptive Taylor Harris Hawks Optimization-Based Deep Convolutional Neural Network","authors":"Scaria Alex, T. Rajkumar","doi":"10.4018/IJDST.300354","DOIUrl":null,"url":null,"abstract":"JavaScript has to become a pervasive web technology that facilitates interactive and dynamic Web sites. The extensive usage and the properties permit the authors to simply obfuscate the code and make JavaScript an interesting place for hackers. JavaScript is usually used for adding functionalities and improving the usage of web applications. Despite several merits and usages of JavaScript, the major issue is that several recent cyber-attacks like drive-by-download attacks utilized the susceptibility of JavaScript codes. This paper devises a novel technique for detecting malicious JavaScript. Here, JavaScript codes are fed to the feature extraction phase for extracting the noteworthy features that include execution time, function calls, conditional statements, break statements, and Boolean. The extracted features are further subjected to data transformation wherein log transformation is adapted to normalize the data. Then, feature selection is performed using mutual information.","PeriodicalId":118536,"journal":{"name":"Int. J. Distributed Syst. Technol.","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Distributed Syst. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJDST.300354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

JavaScript has to become a pervasive web technology that facilitates interactive and dynamic Web sites. The extensive usage and the properties permit the authors to simply obfuscate the code and make JavaScript an interesting place for hackers. JavaScript is usually used for adding functionalities and improving the usage of web applications. Despite several merits and usages of JavaScript, the major issue is that several recent cyber-attacks like drive-by-download attacks utilized the susceptibility of JavaScript codes. This paper devises a novel technique for detecting malicious JavaScript. Here, JavaScript codes are fed to the feature extraction phase for extracting the noteworthy features that include execution time, function calls, conditional statements, break statements, and Boolean. The extracted features are further subjected to data transformation wherein log transformation is adapted to normalize the data. Then, feature selection is performed using mutual information.
基于自适应Taylor Harris Hawks优化的深度卷积神经网络的恶意JavaScript检测方法
JavaScript必须成为一种普及的web技术,以促进交互式和动态web站点。广泛的使用和属性允许作者简单地混淆代码,并使JavaScript成为黑客感兴趣的地方。JavaScript通常用于添加功能和改进web应用程序的使用。尽管JavaScript有一些优点和用途,但主要的问题是最近的一些网络攻击,如下载驱动攻击利用了JavaScript代码的易感性。本文设计了一种检测恶意JavaScript的新技术。在这里,JavaScript代码被送到特征提取阶段,以提取值得注意的特性,包括执行时间、函数调用、条件语句、break语句和布尔值。提取的特征进一步进行数据转换,其中采用对数转换对数据进行规范化。然后,利用互信息进行特征选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信