Periodic Solutions of Branched Space from Closed Orbits under Mixed Perturbations

L. Deng, Ruiping Huang, Wenhui Hao, Qingzheng Xu
{"title":"Periodic Solutions of Branched Space from Closed Orbits under Mixed Perturbations","authors":"L. Deng, Ruiping Huang, Wenhui Hao, Qingzheng Xu","doi":"10.1145/3348400.3348406","DOIUrl":null,"url":null,"abstract":"By combining the means of the center manifold theorem and Planar branching theory, this paper studies the sufficient conditions for general three-dimensional systems to branch out into spatial periodic solutions under mixed perturbations, and obtains two theorems for judging the periodic solutions of general three-dimensional systems branching out from closed orbits, which generalize the results of existing planar systems.","PeriodicalId":297459,"journal":{"name":"Proceedings of the 2019 International Conference on Mathematics, Science and Technology Teaching and Learning - ICMSTTL 2019","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 International Conference on Mathematics, Science and Technology Teaching and Learning - ICMSTTL 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3348400.3348406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

By combining the means of the center manifold theorem and Planar branching theory, this paper studies the sufficient conditions for general three-dimensional systems to branch out into spatial periodic solutions under mixed perturbations, and obtains two theorems for judging the periodic solutions of general three-dimensional systems branching out from closed orbits, which generalize the results of existing planar systems.
混合扰动下闭轨道分支空间的周期解
结合中心流形定理与平面分支理论的方法,研究了一般三维系统在混合扰动下分支出空间周期解的充分条件,得到了一般三维系统从封闭轨道分支出周期解的两个定理,推广了已有平面系统的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信