Direct Reinforcement Learning for Autonomous Power Configuration and Control in Wireless Networks

A. Udenze, K. Mcdonald-Maier
{"title":"Direct Reinforcement Learning for Autonomous Power Configuration and Control in Wireless Networks","authors":"A. Udenze, K. Mcdonald-Maier","doi":"10.1109/AHS.2009.50","DOIUrl":null,"url":null,"abstract":"In this paper, non deterministic Direct Reinforcement Learning (RL) for controlling the transmission times and power of a Wireless Sensor Network (WSN) node is presented. RL allows for truly autonomous optimal behaviour of agents by requiring no models or supervision to learn. Optimal actions are learnt by repeated interactions with the environment. Performance results are presented for Monte Carlo, TD0 and TDλ. The resultant optimal learned policies are shown to out perform static power control in a stochastic environment.","PeriodicalId":318989,"journal":{"name":"2009 NASA/ESA Conference on Adaptive Hardware and Systems","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 NASA/ESA Conference on Adaptive Hardware and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AHS.2009.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In this paper, non deterministic Direct Reinforcement Learning (RL) for controlling the transmission times and power of a Wireless Sensor Network (WSN) node is presented. RL allows for truly autonomous optimal behaviour of agents by requiring no models or supervision to learn. Optimal actions are learnt by repeated interactions with the environment. Performance results are presented for Monte Carlo, TD0 and TDλ. The resultant optimal learned policies are shown to out perform static power control in a stochastic environment.
无线网络中自主电源配置与控制的直接强化学习
本文提出了一种用于控制无线传感器网络(WSN)节点传输次数和功率的非确定性直接强化学习(RL)方法。强化学习允许智能体真正自主的最佳行为,不需要模型或监督来学习。最佳行动是通过与环境的反复互动来学习的。给出了蒙特卡罗、TD0和TDλ的性能结果。结果表明,所得到的最优学习策略在随机环境中优于静态功率控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信