Picard's method to solve a system of biaffine equations and its application to pole placement

Gopal Jee, S. Dasgupta
{"title":"Picard's method to solve a system of biaffine equations and its application to pole placement","authors":"Gopal Jee, S. Dasgupta","doi":"10.1109/CCA.2013.6662876","DOIUrl":null,"url":null,"abstract":"Picard's method for finding the roots of univariate polynomials has been extended to solve multivariate biaffine equations. It is shown that from the same initial guess, the proposed method finds most of the real solutions of a set of biaffine equations. Method's applicability in solving constrained state and output feedback pole placement problems is demonstrated through numerical examples. The main advantage of this method is that it provides a systematic way of finding more than one solutions of a given set of equations.","PeriodicalId":379739,"journal":{"name":"2013 IEEE International Conference on Control Applications (CCA)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Control Applications (CCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2013.6662876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Picard's method for finding the roots of univariate polynomials has been extended to solve multivariate biaffine equations. It is shown that from the same initial guess, the proposed method finds most of the real solutions of a set of biaffine equations. Method's applicability in solving constrained state and output feedback pole placement problems is demonstrated through numerical examples. The main advantage of this method is that it provides a systematic way of finding more than one solutions of a given set of equations.
求解双仿方程系统的皮卡德方法及其在极点布置中的应用
皮卡德求单变量多项式根的方法已推广到求解多元双仿方程。结果表明,在相同的初始猜想下,该方法能求出一组双仿方程的大部分实解。通过数值算例说明了该方法在求解约束状态和输出反馈极点配置问题中的适用性。这种方法的主要优点是它提供了一种系统的方法来找到给定一组方程的多个解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信