Temperature management for heterogeneous multi-core FPGAs using adaptive evolutionary multi-objective approaches

Renzhi Chen, Peter R. Lewis, X. Yao
{"title":"Temperature management for heterogeneous multi-core FPGAs using adaptive evolutionary multi-objective approaches","authors":"Renzhi Chen, Peter R. Lewis, X. Yao","doi":"10.1109/ICES.2014.7008728","DOIUrl":null,"url":null,"abstract":"Heterogeneous multi-core FPGAs contain different types of cores, which can improve efficiency when used with an effective online task scheduler. However, it is not easy to find the right cores for tasks when there are multiple objectives or dozens of cores. Inappropriate scheduling may cause hot spots which decrease the reliability of the chip. Given that, our research builds a simulating platform to evaluate all kinds of scheduling algorithms on a variety of architectures. On this platform, we provide an online scheduler which uses multi-objective evolutionary algorithm (EA). Comparing the EA and current algorithms such as Predictive Dynamic Thermal Management (PDTM) and Adaptive Temperature Threshold Dynamic Thermal Management (ATDTM), we find some drawbacks in previous work. First, current algorithms are overly dependent on manually set constant parameters. Second, those algorithms neglect optimization for heterogeneous architectures. Third, they use single-objective methods, or use linear weighting method to convert a multi-objective optimization into a single-objective optimization. Unlike other algorithms, the EA is adaptive and does not require resetting parameters when workloads switch from one to another. EAs also improve performance when used on heterogeneous architecture. A efficient Pareto front can be obtained with EAs for the purpose of multiple objectives.","PeriodicalId":432958,"journal":{"name":"2014 IEEE International Conference on Evolvable Systems","volume":"75 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Evolvable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICES.2014.7008728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Heterogeneous multi-core FPGAs contain different types of cores, which can improve efficiency when used with an effective online task scheduler. However, it is not easy to find the right cores for tasks when there are multiple objectives or dozens of cores. Inappropriate scheduling may cause hot spots which decrease the reliability of the chip. Given that, our research builds a simulating platform to evaluate all kinds of scheduling algorithms on a variety of architectures. On this platform, we provide an online scheduler which uses multi-objective evolutionary algorithm (EA). Comparing the EA and current algorithms such as Predictive Dynamic Thermal Management (PDTM) and Adaptive Temperature Threshold Dynamic Thermal Management (ATDTM), we find some drawbacks in previous work. First, current algorithms are overly dependent on manually set constant parameters. Second, those algorithms neglect optimization for heterogeneous architectures. Third, they use single-objective methods, or use linear weighting method to convert a multi-objective optimization into a single-objective optimization. Unlike other algorithms, the EA is adaptive and does not require resetting parameters when workloads switch from one to another. EAs also improve performance when used on heterogeneous architecture. A efficient Pareto front can be obtained with EAs for the purpose of multiple objectives.
基于自适应进化多目标方法的异构多核fpga温度管理
异构多核fpga包含不同类型的核,当与有效的在线任务调度程序一起使用时,可以提高效率。然而,当存在多个目标或数十个核心时,为任务找到合适的核心并不容易。调度不当可能会产生热点,降低芯片的可靠性。鉴于此,我们的研究建立了一个仿真平台来评估各种架构下的各种调度算法。在这个平台上,我们提供了一个使用多目标进化算法的在线调度程序。将EA与现有的预测动态热管理(PDTM)和自适应温度阈值动态热管理(ATDTM)算法进行比较,发现了前人研究的不足之处。首先,目前的算法过于依赖于手动设置的常数参数。其次,这些算法忽略了对异构架构的优化。三是采用单目标方法,或采用线性加权法将多目标优化转化为单目标优化。与其他算法不同,EA是自适应的,当工作负载从一种切换到另一种时,不需要重置参数。在异构架构上使用ea还可以提高性能。对于多目标,利用ea可以得到一个有效的帕累托前沿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信