A Unified Density-Driven Framework For Effective Data Denoising And Robust Abstention

Krishanu Sarker, Xiulong Yang, Yang Li, S. Belkasim, Shihao Ji
{"title":"A Unified Density-Driven Framework For Effective Data Denoising And Robust Abstention","authors":"Krishanu Sarker, Xiulong Yang, Yang Li, S. Belkasim, Shihao Ji","doi":"10.1109/ICIP42928.2021.9506754","DOIUrl":null,"url":null,"abstract":"The success of Deep Neural Networks (DNNs) highly depends on data quality. Moreover, predictive uncertainty reduces reliability of DNNs for real-world applications. In this paper, we aim to address these two issues by proposing a unified filtering framework leveraging underlying data density, that effectively denoises training data as well as avoids predicting confusing samples. Our proposed framework differentiates noise from clean data samples without modifying existing DNN architectures or loss functions. Extensive experiments on multiple benchmark datasets and recent COVIDx dataset demonstrate the effectiveness of our framework over state-of-the-art (SOTA) methods in denoising training data and abstaining uncertain test data.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"36 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The success of Deep Neural Networks (DNNs) highly depends on data quality. Moreover, predictive uncertainty reduces reliability of DNNs for real-world applications. In this paper, we aim to address these two issues by proposing a unified filtering framework leveraging underlying data density, that effectively denoises training data as well as avoids predicting confusing samples. Our proposed framework differentiates noise from clean data samples without modifying existing DNN architectures or loss functions. Extensive experiments on multiple benchmark datasets and recent COVIDx dataset demonstrate the effectiveness of our framework over state-of-the-art (SOTA) methods in denoising training data and abstaining uncertain test data.
一种统一的密度驱动框架用于有效的数据去噪和鲁棒消噪
深度神经网络(dnn)的成功很大程度上取决于数据质量。此外,预测的不确定性降低了dnn在实际应用中的可靠性。在本文中,我们的目标是通过提出一个利用底层数据密度的统一过滤框架来解决这两个问题,该框架有效地去噪训练数据并避免预测混淆的样本。我们提出的框架在不修改现有DNN架构或损失函数的情况下将噪声与干净数据样本区分开来。在多个基准数据集和最近的covid数据集上进行的大量实验表明,我们的框架在去噪训练数据和消除不确定测试数据方面优于最先进的(SOTA)方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信