{"title":"A new approach in Anti-lock Braking System (ABS) based on adaptive neuro-fuzzy self-tuning PID controller","authors":"N. Raesian, N. Khajehpour, M. Yaghoobi","doi":"10.1109/ICCIAUTOM.2011.6356714","DOIUrl":null,"url":null,"abstract":"Anti-lock Braking Systems (ABS) have been developed to reduce tendency for wheel lock and improve vehicle control during sudden braking especially on slippery road surfaces. Variations in the values of weight, the friction coefficient of the road, road inclination and other nonlinear dynamics may highly affect the performance of antilock braking systems (ABS). This system which is a nonlinear system may not be easily controlled by classical control methods. An intelligent fuzzy control method is very useful for this kind of nonlinear system. Also, a self-tuning scheme seems necessary to overcome these problems. We develop an adaptive neuro-fuzzy self-tuning PID control scheme for ABS. In this paper, fuzzy self-tuning PID controllers with using ANFIS have been improved in antilock braking system. This controller designed with three control objectives consist of reduce stopping time, limit slip ratio and improve the performance controlling system (reducing rise time and overshoot) on the ABS brake. Results of simulation showed that our aims are achieved.","PeriodicalId":438427,"journal":{"name":"The 2nd International Conference on Control, Instrumentation and Automation","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2nd International Conference on Control, Instrumentation and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIAUTOM.2011.6356714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
Anti-lock Braking Systems (ABS) have been developed to reduce tendency for wheel lock and improve vehicle control during sudden braking especially on slippery road surfaces. Variations in the values of weight, the friction coefficient of the road, road inclination and other nonlinear dynamics may highly affect the performance of antilock braking systems (ABS). This system which is a nonlinear system may not be easily controlled by classical control methods. An intelligent fuzzy control method is very useful for this kind of nonlinear system. Also, a self-tuning scheme seems necessary to overcome these problems. We develop an adaptive neuro-fuzzy self-tuning PID control scheme for ABS. In this paper, fuzzy self-tuning PID controllers with using ANFIS have been improved in antilock braking system. This controller designed with three control objectives consist of reduce stopping time, limit slip ratio and improve the performance controlling system (reducing rise time and overshoot) on the ABS brake. Results of simulation showed that our aims are achieved.