Failed Nerve Blocks: Prevention and Management

S. Sharma
{"title":"Failed Nerve Blocks: Prevention and Management","authors":"S. Sharma","doi":"10.13107/jaccr.2018.v04i03.101","DOIUrl":null,"url":null,"abstract":"“The secret of success is constancy of purpose” – Benjamin Disraeli, British politician Success and failure go side by side in regional anesthesia. No anesthesiologist can claim a 100% success record while giving nerve blocks. Hence, it is always better to focus on how to prevent causes of block failure rather than focusing on managing a failed block. Abdallah and Brull did a comprehensive literature hunt to find out the meaning of block “success” which were used by various authors in their studies and found that it was highly variable and there was lack of consensus regarding its meaning [1]. The most common definition of block success was an achievement of a surgical block within a designated period. There are essentially four stakeholders for defining success criteria: Namely the patient, the anesthesiologist, the surgeon, and the hospital administrator. The various parameters of success for a patient which included post-operative pain and patient satisfaction were evaluated in four trials only. The anesthesiologist-related indicators such as block onset time and complications were reported most frequently. The surgeon and hospital administrator-related indicators were not collected in any trial. For all practical purposes, especially from our perspective, a block failure may be accepted when complying with any one of the following after giving an adequate time of approximately 30 min: Conversion to general anesthesia (GA) after surgical incision. Use of intravenous (IV) opioid analgesics ≥100 μg fentanyl or equivalent after incision. Rescue peripheral nerve block given (a second block after completion of an initial block). Infiltration of local anesthetic agent (LA) into the surgical site. The above four criteria are routinely recorded in medical records and have also been accepted in previous research papers. We may have (a) a total failure which is defined as block where bolus of LA completely misses its target and surgery cannot proceed, (b) an incomplete block where patient has numbness in the area of nerve distribution but not adequate for incision, (c) a patchy block in which some areas in distribution of plexus usually have escaped, (d) a wear off block or secondary failure seen when surgery outlasts the duration of block, and (e) a misdirected block is when part or whole of the drug is injected into the neighboring structures, for example, into a different fascial or muscular plane or a vessel. Morgan had stated that “Regional anesthesia always works – provided you put the right dose of the right drug in the right place.” Failure occurs due to blocking the wrong nerve or not blocking all the nerves for planned surgery. Three primary keys to successful regional anesthesia are, therefore, nerve location, nerve location, and nerve location! – N.M. Denny. Every anesthesiologist must “pause” just before placing the needle at the site of nerve block. While doing so, he re-confirms the patient’s identity, the intended procedure and the correct side of the intended nerve block. There are numerous factors which play a crucial role in the success or failure of a peripheral nerve block. The operator’s technical skills and experience play a substantial role. An unskilled anesthesiologist is perhaps the biggest cause of failure. It has been found that exposure to multiple techniques at the same time is confusing for the beginner. A pearl of wisdom is that one should avoid “over-selling” regional anesthesia (RA) techniques in the initial days of their independent practice. Dr. Gaston Labat in 1924 had wisely sermoned that “A thorough knowledge of the descriptive and topographic anatomy with regard to nerve distribution is a condition which anyone desirous of attempting to study regional anesthesia should fulfill.” If ultrasound (US) is being used, then knowledge of sono-anatomy is equally essential. Gross anatomic distortion will, however, remain a challenge to the success of nerve blocks. It is essential to give appropriate blocks for appropriate surgery. According to Hilton’s Law, the nerve trunk innervating a joint also supplies the overlying skin and the muscles that move that joint, and one must block all the nerves for a successful block. On the contrary, one must also understand the limitations of a particular nerve plexus block and the most common nerves that may be spared in a plexus block. It is better to choose one technique, become familiar, confident and comfortable with it and stay with the technique for a reasonable time, rather than trying unfamiliar nerve block techniques at the first go. Sub-optimal placement of LA in landmark-based technique leads to the highly variable success rate of these blocks. Using proper equipment is always advisable, and both peripheral nerve stimulator (PNS) and US have been validated to increase success rates in multiple studies. Block success rates are similar between US and PNS when the block was performed by experts [2]. Whatever the equipment, knowing and familiarizing with it is a bare minimum requirement. While using a nerve stimulator, the current intensity is essentially the most important factor. An evoked motor response at a current of ≤0.5 mA (0.3–0.5 mA) ensures a successful nerve block. Knowledge of an appropriate motor response of the innervating nerve is crucial for the success of the nerve block, and any non-ideal motor responses will increase the failure rates. In recent times, everybody is laying emphasis in US-guided blocks and the target nerve is no longer invisible. Does US-guided blocks lead to a 100% success? Sites et al. identified 398 of 520 peripheral nerve block errors committed by the US novices during their performance [3]. The crux is that the US may not eliminate failures completely. The major limitation of US technology is the dependence on the operator. One needs adequate training and has a definite curve in honing the skills. The most common errors during US-guided blocks are too much of hand motions while holding the needle or probe, poor choice of needle-insertion site and angle, difficulty in aligning needle with the US-beam thus preventing needle visualization, failure to recognize needle tip before injection, anatomic artifacts (tissue resembling target nerve), and failure to recognize maldistribution of LA [4]. Combination of US and PNS (Dual guidance), for nerve identification and blockade, has also been proposed. Using both facilitates learning, improve trainee performance and provide an increased level of confidence and comfort. For superficial blocks, US alone is usually sufficient and PNS may be used to monitor for an overlooked intraneural placement. For deep or anatomically challenging US-guided blocks with inadequate images, PNS can be used to identify the nerve structures of interest. Multi-stimulation, a technique where each component of the nerve plexus is stimulated separately has been proved to increase the success rate and reduce the dose of LA. It, however, requires multiple passes or multiple skin punctures with the block needle. The best results are seen for the infra-clavicular block, mid-humeral block, axillary block, popliteal or sciatic block, and most US-guided nerve blocks. No additional risk of nerve injury during redirection of the needle through partially anesthetized nerves has been reported. Excessively anxious or an uncooperative patient, patients with any mental illness are not the ideal candidates for RA. The patient’s anxiety may affect the anesthesiologist adversely making him anxious, denting his confidence, and consequently ruining his chances of a successful nerve block (Table 1) [5]. Underlying comorbidities in the patient such as obesity, arthritis, and diabetes may affect positioning, access, nerve localization, and identification. A history of a good previous experience of anesthesia or surgery is predictive of a more relaxed patient and a successful block. The management in such patients comprises good pre-operative counseling with a gentle, unhurried patient handling. Subsequent management may include use of a light anxiolytic premedication, followed with lifting drapes off patient’s eyes, shielding of the ears from noise, and applying headphones with soft music in the operation theaters (OT) (Fig. 1). Patients may still claim that their block has failed due to the conscious awareness of OT settings and “sensations” transmitted through unblocked nerve fibers. IV analgesia or sedation with appropriate monitoring for relieving anxiety and pain is essential and considered “standard care” and should not be considered as a failure. Drugs are an important factor for the success of nerve blocks. Usage of a sufficient volume and appropriate concentration of LA solution is the key to a successful nerve block. Too much of volume or concentration of LA may lead to an enhanced risk of side effects rather than increasing efficacy. Likewise, too less of volume or concentration of LA increase chances of failure. The anesthesiologist should always check for wrong dispensing and expiry date of drug personally, before proceeding with the nerve block. Mixing of LA is often misinterpreted to provide significant advantages such as prolongation of the block duration and decreased toxicity; instead, they provide effects which only mimic an intermediate acting agent with higher chances of toxicity. Isolated case reports professing very low volumes of LA must be taken in the right context and should not be made the universal rule. Perineural opioid and non-opioid adjuvants prolong the duration of the block, but none have prolonged duration >24 h. Alkalinization does not improve the block success rate. The adjuvants allow only dose reductions of LA, rather than preventing block failure. The environment where anaesthesiologists who are in a hurry or work under undue pressure, often face higher failure rates . Organizational changes like instituting a “block room” for RA will improve success. Indirectly it will ","PeriodicalId":448126,"journal":{"name":"Journal of Anaesthesia and Critical Care Reports","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Anaesthesia and Critical Care Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13107/jaccr.2018.v04i03.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

“The secret of success is constancy of purpose” – Benjamin Disraeli, British politician Success and failure go side by side in regional anesthesia. No anesthesiologist can claim a 100% success record while giving nerve blocks. Hence, it is always better to focus on how to prevent causes of block failure rather than focusing on managing a failed block. Abdallah and Brull did a comprehensive literature hunt to find out the meaning of block “success” which were used by various authors in their studies and found that it was highly variable and there was lack of consensus regarding its meaning [1]. The most common definition of block success was an achievement of a surgical block within a designated period. There are essentially four stakeholders for defining success criteria: Namely the patient, the anesthesiologist, the surgeon, and the hospital administrator. The various parameters of success for a patient which included post-operative pain and patient satisfaction were evaluated in four trials only. The anesthesiologist-related indicators such as block onset time and complications were reported most frequently. The surgeon and hospital administrator-related indicators were not collected in any trial. For all practical purposes, especially from our perspective, a block failure may be accepted when complying with any one of the following after giving an adequate time of approximately 30 min: Conversion to general anesthesia (GA) after surgical incision. Use of intravenous (IV) opioid analgesics ≥100 μg fentanyl or equivalent after incision. Rescue peripheral nerve block given (a second block after completion of an initial block). Infiltration of local anesthetic agent (LA) into the surgical site. The above four criteria are routinely recorded in medical records and have also been accepted in previous research papers. We may have (a) a total failure which is defined as block where bolus of LA completely misses its target and surgery cannot proceed, (b) an incomplete block where patient has numbness in the area of nerve distribution but not adequate for incision, (c) a patchy block in which some areas in distribution of plexus usually have escaped, (d) a wear off block or secondary failure seen when surgery outlasts the duration of block, and (e) a misdirected block is when part or whole of the drug is injected into the neighboring structures, for example, into a different fascial or muscular plane or a vessel. Morgan had stated that “Regional anesthesia always works – provided you put the right dose of the right drug in the right place.” Failure occurs due to blocking the wrong nerve or not blocking all the nerves for planned surgery. Three primary keys to successful regional anesthesia are, therefore, nerve location, nerve location, and nerve location! – N.M. Denny. Every anesthesiologist must “pause” just before placing the needle at the site of nerve block. While doing so, he re-confirms the patient’s identity, the intended procedure and the correct side of the intended nerve block. There are numerous factors which play a crucial role in the success or failure of a peripheral nerve block. The operator’s technical skills and experience play a substantial role. An unskilled anesthesiologist is perhaps the biggest cause of failure. It has been found that exposure to multiple techniques at the same time is confusing for the beginner. A pearl of wisdom is that one should avoid “over-selling” regional anesthesia (RA) techniques in the initial days of their independent practice. Dr. Gaston Labat in 1924 had wisely sermoned that “A thorough knowledge of the descriptive and topographic anatomy with regard to nerve distribution is a condition which anyone desirous of attempting to study regional anesthesia should fulfill.” If ultrasound (US) is being used, then knowledge of sono-anatomy is equally essential. Gross anatomic distortion will, however, remain a challenge to the success of nerve blocks. It is essential to give appropriate blocks for appropriate surgery. According to Hilton’s Law, the nerve trunk innervating a joint also supplies the overlying skin and the muscles that move that joint, and one must block all the nerves for a successful block. On the contrary, one must also understand the limitations of a particular nerve plexus block and the most common nerves that may be spared in a plexus block. It is better to choose one technique, become familiar, confident and comfortable with it and stay with the technique for a reasonable time, rather than trying unfamiliar nerve block techniques at the first go. Sub-optimal placement of LA in landmark-based technique leads to the highly variable success rate of these blocks. Using proper equipment is always advisable, and both peripheral nerve stimulator (PNS) and US have been validated to increase success rates in multiple studies. Block success rates are similar between US and PNS when the block was performed by experts [2]. Whatever the equipment, knowing and familiarizing with it is a bare minimum requirement. While using a nerve stimulator, the current intensity is essentially the most important factor. An evoked motor response at a current of ≤0.5 mA (0.3–0.5 mA) ensures a successful nerve block. Knowledge of an appropriate motor response of the innervating nerve is crucial for the success of the nerve block, and any non-ideal motor responses will increase the failure rates. In recent times, everybody is laying emphasis in US-guided blocks and the target nerve is no longer invisible. Does US-guided blocks lead to a 100% success? Sites et al. identified 398 of 520 peripheral nerve block errors committed by the US novices during their performance [3]. The crux is that the US may not eliminate failures completely. The major limitation of US technology is the dependence on the operator. One needs adequate training and has a definite curve in honing the skills. The most common errors during US-guided blocks are too much of hand motions while holding the needle or probe, poor choice of needle-insertion site and angle, difficulty in aligning needle with the US-beam thus preventing needle visualization, failure to recognize needle tip before injection, anatomic artifacts (tissue resembling target nerve), and failure to recognize maldistribution of LA [4]. Combination of US and PNS (Dual guidance), for nerve identification and blockade, has also been proposed. Using both facilitates learning, improve trainee performance and provide an increased level of confidence and comfort. For superficial blocks, US alone is usually sufficient and PNS may be used to monitor for an overlooked intraneural placement. For deep or anatomically challenging US-guided blocks with inadequate images, PNS can be used to identify the nerve structures of interest. Multi-stimulation, a technique where each component of the nerve plexus is stimulated separately has been proved to increase the success rate and reduce the dose of LA. It, however, requires multiple passes or multiple skin punctures with the block needle. The best results are seen for the infra-clavicular block, mid-humeral block, axillary block, popliteal or sciatic block, and most US-guided nerve blocks. No additional risk of nerve injury during redirection of the needle through partially anesthetized nerves has been reported. Excessively anxious or an uncooperative patient, patients with any mental illness are not the ideal candidates for RA. The patient’s anxiety may affect the anesthesiologist adversely making him anxious, denting his confidence, and consequently ruining his chances of a successful nerve block (Table 1) [5]. Underlying comorbidities in the patient such as obesity, arthritis, and diabetes may affect positioning, access, nerve localization, and identification. A history of a good previous experience of anesthesia or surgery is predictive of a more relaxed patient and a successful block. The management in such patients comprises good pre-operative counseling with a gentle, unhurried patient handling. Subsequent management may include use of a light anxiolytic premedication, followed with lifting drapes off patient’s eyes, shielding of the ears from noise, and applying headphones with soft music in the operation theaters (OT) (Fig. 1). Patients may still claim that their block has failed due to the conscious awareness of OT settings and “sensations” transmitted through unblocked nerve fibers. IV analgesia or sedation with appropriate monitoring for relieving anxiety and pain is essential and considered “standard care” and should not be considered as a failure. Drugs are an important factor for the success of nerve blocks. Usage of a sufficient volume and appropriate concentration of LA solution is the key to a successful nerve block. Too much of volume or concentration of LA may lead to an enhanced risk of side effects rather than increasing efficacy. Likewise, too less of volume or concentration of LA increase chances of failure. The anesthesiologist should always check for wrong dispensing and expiry date of drug personally, before proceeding with the nerve block. Mixing of LA is often misinterpreted to provide significant advantages such as prolongation of the block duration and decreased toxicity; instead, they provide effects which only mimic an intermediate acting agent with higher chances of toxicity. Isolated case reports professing very low volumes of LA must be taken in the right context and should not be made the universal rule. Perineural opioid and non-opioid adjuvants prolong the duration of the block, but none have prolonged duration >24 h. Alkalinization does not improve the block success rate. The adjuvants allow only dose reductions of LA, rather than preventing block failure. The environment where anaesthesiologists who are in a hurry or work under undue pressure, often face higher failure rates . Organizational changes like instituting a “block room” for RA will improve success. Indirectly it will
神经阻滞失败:预防和管理
无论什么设备,了解和熟悉它都是最低要求。当使用神经刺激器时,电流强度本质上是最重要的因素。在电流≤0.5 mA (0.3-0.5 mA)时诱发的运动反应可确保成功的神经阻滞。了解支配神经的适当运动反应对神经阻滞的成功至关重要,任何不理想的运动反应都会增加失败率。近年来,所有人都在强调美国制导的封锁,目标神经不再是隐形的。美国引导的封锁能100%成功吗?Sites等人发现了美国新手在表演过程中犯下的520例周围神经阻滞错误中的398例[3]。关键在于,美国可能无法完全消除失败。美国技术的主要限制是对运营商的依赖。一个人需要充分的训练,在磨练技能方面有一个明确的曲线。在us引导阻滞中,最常见的错误是握针或探头时手部动作过多,穿刺位置和角度选择不当,针与us束对齐困难,从而无法看到针,注射前无法识别针尖,解剖伪影(类似目标神经的组织),以及无法识别LA分布不均匀[4]。也有人提出将US和PNS (Dual guidance)相结合用于神经识别和阻断。两者的使用有助于学习,提高学员的表现,并提供更高的信心和舒适度。对于浅表阻滞,单纯US通常是足够的,PNS可用于监测被忽视的神经内放置。对于深度或解剖学上具有挑战性的图像不充分的us引导阻滞,PNS可用于识别感兴趣的神经结构。多重刺激,一种分别刺激神经丛各部分的技术,已被证明可以提高成功率并减少LA的剂量。然而,它需要多次通过或多次皮肤穿刺针头。锁骨下阻滞、肱骨中阻滞、腋窝阻滞、腘窝或坐骨阻滞以及大多数导引神经阻滞效果最好。在针头重定向穿过部分麻醉的神经时,没有额外的神经损伤风险报道。过度焦虑或不合作的患者,任何精神疾病患者都不是RA的理想候选者。患者的焦虑可能会对麻醉师产生不利影响,使麻醉师焦虑,削弱麻醉师的信心,从而破坏麻醉师神经阻滞成功的机会(表1)[5]。患者的潜在合并症,如肥胖、关节炎和糖尿病,可能影响体位、通路、神经定位和识别。以往良好的麻醉或手术经验预示着患者会更放松,阻滞也会成功。这类患者的管理包括良好的术前咨询和温和、从容不迫的病人处理。随后的处理可能包括使用轻度抗焦虑药物,然后解除患者眼睛上的窗帘,屏蔽耳朵免受噪音的影响,并在手术室(OT)中使用带有柔和音乐的耳机(图1)。患者可能仍然声称他们的阻塞已经失败,因为他们有意识地意识到OT环境和通过未阻塞的神经纤维传递的“感觉”。静脉镇痛或镇静与适当的监测缓解焦虑和疼痛是必要的,被认为是“标准护理”,不应被认为是失败的。药物是神经阻滞成功的重要因素。使用足够体积和适当浓度的LA溶液是神经阻滞成功的关键。过多的体积或浓度可能会增加副作用的风险,而不是增加疗效。同样,LA的体积或浓度过低也会增加失败的机会。在进行神经阻滞之前,麻醉师应该亲自检查是否有错误的配药和药物的有效期。LA的混合经常被误解为提供显著的优势,如延长阻滞持续时间和降低毒性;相反,它们提供的效果只是模仿具有更高毒性机会的中间作用剂。必须在正确的背景下看待表明LA量非常低的孤立病例报告,而不应将其作为普遍规则。神经周围阿片类药物和非阿片类药物佐剂延长阻滞持续时间,但没有一种延长阻滞持续时间>24小时。碱化不能提高阻滞成功率。佐剂只能减少LA的剂量,而不能防止阻滞失效。在匆忙或工作压力过大的环境中,麻醉师往往面临更高的失败率。 组织上的变化,比如为RA建立一个“块室”,将提高成功率。它会间接地
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信