Henrique O. Marques, R. Campello, A. Zimek, J. Sander
{"title":"On the internal evaluation of unsupervised outlier detection","authors":"Henrique O. Marques, R. Campello, A. Zimek, J. Sander","doi":"10.1145/2791347.2791352","DOIUrl":null,"url":null,"abstract":"Although there is a large and growing literature that tackles the unsupervised outlier detection problem, the unsupervised evaluation of outlier detection results is still virtually untouched in the literature. The so-called internal evaluation, based solely on the data and the assessed solutions themselves, is required if one wants to statistically validate (in absolute terms) or just compare (in relative terms) the solutions provided by different algorithms or by different parameterizations of a given algorithm in the absence of labeled data. However, in contrast to unsupervised cluster analysis, where indexes for internal evaluation and validation of clustering solutions have been conceived and shown to be very useful, in the outlier detection domain this problem has been notably overlooked. Here we discuss this problem and provide a solution for the internal evaluation of top-n (binary) outlier detection results. Specifically, we propose an index called IREOS (Internal, Relative Evaluation of Outlier Solutions) that can evaluate and compare different candidate labelings of a collection of multivariate observations in terms of outliers and inliers. We also statistically adjust IREOS for chance and extensively evaluate it in several experiments involving different collections of synthetic and real data sets.","PeriodicalId":225179,"journal":{"name":"Proceedings of the 27th International Conference on Scientific and Statistical Database Management","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2791347.2791352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37
Abstract
Although there is a large and growing literature that tackles the unsupervised outlier detection problem, the unsupervised evaluation of outlier detection results is still virtually untouched in the literature. The so-called internal evaluation, based solely on the data and the assessed solutions themselves, is required if one wants to statistically validate (in absolute terms) or just compare (in relative terms) the solutions provided by different algorithms or by different parameterizations of a given algorithm in the absence of labeled data. However, in contrast to unsupervised cluster analysis, where indexes for internal evaluation and validation of clustering solutions have been conceived and shown to be very useful, in the outlier detection domain this problem has been notably overlooked. Here we discuss this problem and provide a solution for the internal evaluation of top-n (binary) outlier detection results. Specifically, we propose an index called IREOS (Internal, Relative Evaluation of Outlier Solutions) that can evaluate and compare different candidate labelings of a collection of multivariate observations in terms of outliers and inliers. We also statistically adjust IREOS for chance and extensively evaluate it in several experiments involving different collections of synthetic and real data sets.