Numerical integration in a symbolic context

K. Geddes
{"title":"Numerical integration in a symbolic context","authors":"K. Geddes","doi":"10.1145/32439.32476","DOIUrl":null,"url":null,"abstract":"Techniques for numerical integration within a symbolic computation environment are discussed. The goal is to develop a fully automated numerical integration code that handles infinite intervals of integration and that handles various types of integrand singularities. Such a code should also be able to compute to arbitrarily high precision. For the case of an analytic integrand on a finite interval, a Clenshaw-Curtis quadrature routine is used. A concept of general (non-Taylor) series expansions forms the basis of techniques for identifying transformations that may yield an analytic integrand. For the case when no transformation is successful, the general series expansion is used to represent the integrand and it is directly integrated to move beyond the singular point. The latter technique relies on a powerful symbolic integrator that can express integrals in terms of special functions.","PeriodicalId":314618,"journal":{"name":"Symposium on Symbolic and Algebraic Manipulation","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1986-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Symbolic and Algebraic Manipulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/32439.32476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Techniques for numerical integration within a symbolic computation environment are discussed. The goal is to develop a fully automated numerical integration code that handles infinite intervals of integration and that handles various types of integrand singularities. Such a code should also be able to compute to arbitrarily high precision. For the case of an analytic integrand on a finite interval, a Clenshaw-Curtis quadrature routine is used. A concept of general (non-Taylor) series expansions forms the basis of techniques for identifying transformations that may yield an analytic integrand. For the case when no transformation is successful, the general series expansion is used to represent the integrand and it is directly integrated to move beyond the singular point. The latter technique relies on a powerful symbolic integrator that can express integrals in terms of special functions.
符号上下文中的数值积分
讨论了符号计算环境下的数值积分技术。目标是开发一个完全自动化的数值积分代码,该代码可以处理无限积分区间和处理各种类型的被积和奇点。这样的代码还应该能够计算到任意高的精度。对于有限区间上的解析被积函数,使用了克伦肖-柯蒂斯正交例程。一般(非泰勒)级数展开式的概念构成了识别可能产生解析被积函数的变换的技术基础。对于变换不成功的情况,用一般级数展开表示被积函数,直接积分使其超越奇点。后一种技术依赖于一个强大的符号积分器,它可以用特殊函数表示积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信