Learning class-specific pooling shapes for image classification

Jinzhuo Wang, Wenmin Wang, Ronggang Wang, Wen Gao
{"title":"Learning class-specific pooling shapes for image classification","authors":"Jinzhuo Wang, Wenmin Wang, Ronggang Wang, Wen Gao","doi":"10.1109/ICME.2015.7177433","DOIUrl":null,"url":null,"abstract":"Spatial pyramid (SP) representation is an extension of bag-of-feature model which embeds spatial layout information of local features by pooling feature codes over pre-defined spatial shapes. However, the uniform style of spatial pooling shapes used in standard SP is an ad-hoc manner without theoretical motivation, thus lacking the generalization power to adapt to different distribution of geometric properties across image classes. In this paper, we propose a data-driven approach to adaptively learn class-specific pooling shapes (CSPS). Specifically, we first establish an over-complete set of spatial shapes providing candidates with more flexible geometric patterns. Then the optimal subset for each class is selected by training a linear classifier with structured sparsity constraint and color distribution cues. To further enhance the robust of our model, the representations over CSPS are compressed according to the shape importance and finally fed to SVM with a multi-shape matching kernel for classification task. Experimental results on three challenging datasets (Caltech-256, Scene-15 and Indoor-67) demonstrate the effectiveness of the proposed method on both object and scene images.","PeriodicalId":146271,"journal":{"name":"2015 IEEE International Conference on Multimedia and Expo (ICME)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2015.7177433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Spatial pyramid (SP) representation is an extension of bag-of-feature model which embeds spatial layout information of local features by pooling feature codes over pre-defined spatial shapes. However, the uniform style of spatial pooling shapes used in standard SP is an ad-hoc manner without theoretical motivation, thus lacking the generalization power to adapt to different distribution of geometric properties across image classes. In this paper, we propose a data-driven approach to adaptively learn class-specific pooling shapes (CSPS). Specifically, we first establish an over-complete set of spatial shapes providing candidates with more flexible geometric patterns. Then the optimal subset for each class is selected by training a linear classifier with structured sparsity constraint and color distribution cues. To further enhance the robust of our model, the representations over CSPS are compressed according to the shape importance and finally fed to SVM with a multi-shape matching kernel for classification task. Experimental results on three challenging datasets (Caltech-256, Scene-15 and Indoor-67) demonstrate the effectiveness of the proposed method on both object and scene images.
学习用于图像分类的特定类池形状
空间金字塔(SP)表示是特征袋模型的扩展,它通过在预定义的空间形状上汇集特征代码来嵌入局部特征的空间布局信息。然而,标准SP中使用的统一风格的空间池形状是一种没有理论动机的临时方式,因此缺乏适应不同图像类别之间几何属性分布的泛化能力。在本文中,我们提出了一种数据驱动的方法来自适应学习类特定池形状(CSPS)。具体来说,我们首先建立了一个超完整的空间形状集,为候选对象提供了更灵活的几何图案。然后通过训练一个具有结构化稀疏性约束和颜色分布线索的线性分类器来选择每个类的最优子集。为了进一步增强模型的鲁棒性,根据形状重要度对CSPS上的表示进行压缩,最后通过多形状匹配核将其输入支持向量机进行分类。在三个具有挑战性的数据集(Caltech-256、scene -15和Indoor-67)上的实验结果表明,该方法对物体和场景图像都是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信