FinLex: An effective use of word embeddings for financial lexicon generation

Q1 Mathematics
Sanjiv R. Das , Michele Donini , Muhammad Bilal Zafar , John He , Krishnaram Kenthapadi
{"title":"FinLex: An effective use of word embeddings for financial lexicon generation","authors":"Sanjiv R. Das ,&nbsp;Michele Donini ,&nbsp;Muhammad Bilal Zafar ,&nbsp;John He ,&nbsp;Krishnaram Kenthapadi","doi":"10.1016/j.jfds.2021.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>We present a simple and effective methodology for the generation of lexicons (word lists) that may be used in natural language scoring applications. In particular, in the finance industry, word lists have become ubiquitous for sentiment scoring. These have been derived from dictionaries such as the Harvard Inquirer and require manual curation. Here, we present an automated approach to the curation of lexicons, which makes automatic preparation of any word list immediate. We show that our automated word lists deliver comparable performance to traditional lexicons on machine learning classification tasks. This new approach will enable finance academics and practitioners to create and deploy new word lists in addition to the few traditional ones in a facile manner.</p></div>","PeriodicalId":36340,"journal":{"name":"Journal of Finance and Data Science","volume":"8 ","pages":"Pages 1-11"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405918821000131/pdfft?md5=f870155829ce1c2b61a45c753663ba75&pid=1-s2.0-S2405918821000131-main.pdf","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Finance and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405918821000131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

Abstract

We present a simple and effective methodology for the generation of lexicons (word lists) that may be used in natural language scoring applications. In particular, in the finance industry, word lists have become ubiquitous for sentiment scoring. These have been derived from dictionaries such as the Harvard Inquirer and require manual curation. Here, we present an automated approach to the curation of lexicons, which makes automatic preparation of any word list immediate. We show that our automated word lists deliver comparable performance to traditional lexicons on machine learning classification tasks. This new approach will enable finance academics and practitioners to create and deploy new word lists in addition to the few traditional ones in a facile manner.

FinLex:有效地使用词嵌入来生成金融词汇
我们提出了一种简单而有效的方法来生成词典(单词列表),可以用于自然语言评分应用程序。特别是在金融行业,单词列表已经成为情绪评分的普遍工具。这些词汇来自《哈佛问询报》(Harvard Inquirer)等词典,需要人工管理。在这里,我们提出了一种自动的方法来管理词汇,这使得自动准备任何单词列表立即。我们表明,在机器学习分类任务上,我们的自动单词列表提供了与传统词汇相当的性能。这种新方法将使金融学者和从业人员能够以一种简便的方式创建和部署除了少数传统单词之外的新单词列表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Finance and Data Science
Journal of Finance and Data Science Mathematics-Statistics and Probability
CiteScore
3.90
自引率
0.00%
发文量
15
审稿时长
30 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信