Singular Choices for Multiple Choice

O. Danvy, Martin E. K. Rasmussen
{"title":"Singular Choices for Multiple Choice","authors":"O. Danvy, Martin E. K. Rasmussen","doi":"10.7146/AUL.206.149","DOIUrl":null,"url":null,"abstract":"We revisit and evolve Frandsen and Schwartzbach's axiomatic scoring strategy for multiple-choice exams that credits partial knowledge and levels out guessing. The evolved scoring strategy equalizes the implicit weight of each question by default and makes this weight an optional parameter for each question. Partial credit can also be modulated, which provides a measure of the spread of knowledge of the examinee. Based on a decade of experience in a first-year university course, we find the evolved exams to be more understandable and predictible both for the examiner and for the examinees. Finally, we present a family of scoring functions that fit the model.","PeriodicalId":126978,"journal":{"name":"AU Library Scholarly Publishing Services","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AU Library Scholarly Publishing Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7146/AUL.206.149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We revisit and evolve Frandsen and Schwartzbach's axiomatic scoring strategy for multiple-choice exams that credits partial knowledge and levels out guessing. The evolved scoring strategy equalizes the implicit weight of each question by default and makes this weight an optional parameter for each question. Partial credit can also be modulated, which provides a measure of the spread of knowledge of the examinee. Based on a decade of experience in a first-year university course, we find the evolved exams to be more understandable and predictible both for the examiner and for the examinees. Finally, we present a family of scoring functions that fit the model.
选择题的单选题
我们重新审视并改进了Frandsen和Schwartzbach的多项选择题的公理评分策略,该策略将部分知识归功于部分知识,并消除了猜测。进化的评分策略在默认情况下均衡每个问题的隐式权重,并使该权重成为每个问题的可选参数。部分学分也可以调整,这为考生的知识传播提供了一个衡量标准。根据在大学一年级课程中十年的经验,我们发现改进后的考试对主考官和考生来说都更容易理解和预测。最后,我们给出了一组适合该模型的评分函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信