Characterization of an adaptive refinement algorithm for a meshless eigenvalue solver based on radial basis functions

T. Kaufmann, C. Engstrom, C. Fumeaux
{"title":"Characterization of an adaptive refinement algorithm for a meshless eigenvalue solver based on radial basis functions","authors":"T. Kaufmann, C. Engstrom, C. Fumeaux","doi":"10.1109/EMCSA.2010.6141514","DOIUrl":null,"url":null,"abstract":"A meshless method based on a radial basis collocation approach is presented to calculate eigenvalues for the second-order wave equation. Instead of an explicit mesh topology only a node distribution is required to calculate electric fields, thus facilitating dynamic alteration of the discretization of an electromagnetic problem. An algorithm is presented that automatically adapts an initially very coarse discretization by adding points where higher accuracy is required by the physics of the problem. The algorithm is applied to a cylindrical cavity resonator and the rate of convergence is compared to uniform refinements with the radial basis method and to a regular grid-based finite-difference approach.","PeriodicalId":242783,"journal":{"name":"2010 Electromagnetic Compatibility Symposium - Melbourne","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Electromagnetic Compatibility Symposium - Melbourne","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCSA.2010.6141514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A meshless method based on a radial basis collocation approach is presented to calculate eigenvalues for the second-order wave equation. Instead of an explicit mesh topology only a node distribution is required to calculate electric fields, thus facilitating dynamic alteration of the discretization of an electromagnetic problem. An algorithm is presented that automatically adapts an initially very coarse discretization by adding points where higher accuracy is required by the physics of the problem. The algorithm is applied to a cylindrical cavity resonator and the rate of convergence is compared to uniform refinements with the radial basis method and to a regular grid-based finite-difference approach.
基于径向基函数的无网格特征值求解器的自适应细化算法
提出了一种基于径向基配点法的无网格计算二阶波动方程特征值的方法。该方法不需要明确的网格拓扑结构,只需要一个节点分布就可以计算电场,从而便于电磁问题离散化的动态变化。提出了一种算法,通过在问题的物理性质要求较高精度的地方添加点,自动适应最初非常粗糙的离散化。将该算法应用于圆柱腔谐振器,并将其收敛速度与径向基均匀精化方法和基于正则网格的有限差分方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信