Falsification of Cyber-Physical Systems Using PDDL+ Planning

Diego Aineto, Enrico Scala, E. Onaindía, I. Serina
{"title":"Falsification of Cyber-Physical Systems Using PDDL+ Planning","authors":"Diego Aineto, Enrico Scala, E. Onaindía, I. Serina","doi":"10.1609/icaps.v33i1.27172","DOIUrl":null,"url":null,"abstract":"This work explores the capabilities of current planning technologies to tackle the falsification of safety requirements for cyber-physical systems. Cyber-physical systems are systems where software and physical processes interact over time, and their requirements are commonly specified in temporal logic with time bounds. Roughly, falsification is the process of finding a trajectory of the cyber-physical system that violates the safety requirements, and it is a task typically tackled with black-box algorithms.\nWe analyse the challenges posed by industry-driven falsification benchmarks taken from the ARCH-COMP competition, and propose a first attempt to deal with these problems through PDDL+ planning instead. Our experimental analysis on a selection of these problems provides empirical evidence on the feasibility and effectiveness of planning-based approaches, whilst also identifying the main areas of improvement.","PeriodicalId":239898,"journal":{"name":"International Conference on Automated Planning and Scheduling","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Automated Planning and Scheduling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icaps.v33i1.27172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This work explores the capabilities of current planning technologies to tackle the falsification of safety requirements for cyber-physical systems. Cyber-physical systems are systems where software and physical processes interact over time, and their requirements are commonly specified in temporal logic with time bounds. Roughly, falsification is the process of finding a trajectory of the cyber-physical system that violates the safety requirements, and it is a task typically tackled with black-box algorithms. We analyse the challenges posed by industry-driven falsification benchmarks taken from the ARCH-COMP competition, and propose a first attempt to deal with these problems through PDDL+ planning instead. Our experimental analysis on a selection of these problems provides empirical evidence on the feasibility and effectiveness of planning-based approaches, whilst also identifying the main areas of improvement.
基于PDDL+规划的信息物理系统伪造
这项工作探讨了当前规划技术解决网络物理系统安全要求伪造的能力。信息物理系统是软件和物理过程随时间相互作用的系统,它们的需求通常在具有时间界限的时间逻辑中指定。粗略地说,伪造是找到违反安全要求的网络物理系统轨迹的过程,这是一个通常用黑盒算法解决的任务。我们分析了来自ARCH-COMP竞赛的行业驱动的伪造基准所带来的挑战,并提出了通过PDDL+规划来解决这些问题的第一次尝试。我们对这些问题的实验分析为基于规划的方法的可行性和有效性提供了经验证据,同时也确定了主要的改进领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信