Sensors fault diagnosis in autonomous mobile robots using observer — Based technique

G. Fourlas, G. Karras, K. Kyriakopoulos
{"title":"Sensors fault diagnosis in autonomous mobile robots using observer — Based technique","authors":"G. Fourlas, G. Karras, K. Kyriakopoulos","doi":"10.1109/ICCAR.2015.7166000","DOIUrl":null,"url":null,"abstract":"This research investigates a sensors fault diagnosis in autonomous mobile robot. Through this study we use the observer - Kalman filter identification technique. According to this observer - based method, the experimental input-output data are being exploited for system identification. The motive is to design observers exclusively for each sensor of the system that allows generating residuals. The research goal is to provide early sensors fault diagnosis. In order to prove the efficacy of the proposed method, we investigated different type of faults and an experimental procedure was carried out using a Pioneer 3AT mobile robot.","PeriodicalId":422587,"journal":{"name":"2015 International Conference on Control, Automation and Robotics","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Control, Automation and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAR.2015.7166000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

This research investigates a sensors fault diagnosis in autonomous mobile robot. Through this study we use the observer - Kalman filter identification technique. According to this observer - based method, the experimental input-output data are being exploited for system identification. The motive is to design observers exclusively for each sensor of the system that allows generating residuals. The research goal is to provide early sensors fault diagnosis. In order to prove the efficacy of the proposed method, we investigated different type of faults and an experimental procedure was carried out using a Pioneer 3AT mobile robot.
基于观测器技术的自主移动机器人传感器故障诊断
研究了自主移动机器人的传感器故障诊断方法。通过本研究,我们采用了观测器-卡尔曼滤波识别技术。根据这种基于观测器的方法,利用实验输入输出数据进行系统辨识。其动机是为系统中允许产生残差的每个传感器专门设计观测器。研究目标是为传感器提供早期故障诊断。为了验证该方法的有效性,我们对不同类型的故障进行了研究,并利用先锋3AT移动机器人进行了实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信