{"title":"Passive Optical Array Generators","authors":"M. Taghizadeh, J. Turunen, B. Robertson","doi":"10.1364/optcomp.1991.me23","DOIUrl":null,"url":null,"abstract":"Recent progress in designing and manufacturing space-invariant optical array generators is described. We begin by demonstrating Dammann gratings [1] that generate even-numbered arrays as large as 128x128, and odd-numbered arrays of up to 201x201 spots. The concept of a hybrid hologram [2] is applied to the fabrication of array generators, and extremely high-efficiency (close to 90%) components are obtained. Several novel types of array generators with multiple phase levels are introduced. These can e.g. reconstruct arrays with different fan-out at different angles of incidence. The application of rigorous diffraction theory to design highly efficient and compact array generators is also discussed.","PeriodicalId":302010,"journal":{"name":"Optical Computing","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/optcomp.1991.me23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Recent progress in designing and manufacturing space-invariant optical array generators is described. We begin by demonstrating Dammann gratings [1] that generate even-numbered arrays as large as 128x128, and odd-numbered arrays of up to 201x201 spots. The concept of a hybrid hologram [2] is applied to the fabrication of array generators, and extremely high-efficiency (close to 90%) components are obtained. Several novel types of array generators with multiple phase levels are introduced. These can e.g. reconstruct arrays with different fan-out at different angles of incidence. The application of rigorous diffraction theory to design highly efficient and compact array generators is also discussed.