Learning Semantic Binary Codes by Encoding Attributes for Image Retrieval

Jianwei Luo, Zhi-guo Jiang
{"title":"Learning Semantic Binary Codes by Encoding Attributes for Image Retrieval","authors":"Jianwei Luo, Zhi-guo Jiang","doi":"10.1109/ICPR.2014.57","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of learning semantic compact binary codes for efficient retrieval in large-scale image collections. Our contributions are three-fold. Firstly, we introduce semantic codes, of which each bit corresponds to an attribute that describes a property of an object (e.g. dogs have furry). Secondly, we propose to use matrix factorization (MF) to learn the semantic codes by encoding attributes. Unlike traditional PCA-based encoding methods which quantize data into orthogonal bases, MF assumes no constraints on bases, and this scheme is coincided with that attributes are correlated. Finally, to augment semantic codes, MF is extended to encode extra non-semantic codes to preserve similarity in origin data space. Evaluations on a-Pascal dataset show that our method is comparable to the state-of-the-art when using Euclidean distance as ground truth, and even outperforms state-of-the-art when using class label as ground truth. Furthermore, in experiments, our method can retrieve images that share the same semantic properties with the query image, which can be used to other vision tasks, e.g. re-training classifiers.","PeriodicalId":142159,"journal":{"name":"2014 22nd International Conference on Pattern Recognition","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2014.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the problem of learning semantic compact binary codes for efficient retrieval in large-scale image collections. Our contributions are three-fold. Firstly, we introduce semantic codes, of which each bit corresponds to an attribute that describes a property of an object (e.g. dogs have furry). Secondly, we propose to use matrix factorization (MF) to learn the semantic codes by encoding attributes. Unlike traditional PCA-based encoding methods which quantize data into orthogonal bases, MF assumes no constraints on bases, and this scheme is coincided with that attributes are correlated. Finally, to augment semantic codes, MF is extended to encode extra non-semantic codes to preserve similarity in origin data space. Evaluations on a-Pascal dataset show that our method is comparable to the state-of-the-art when using Euclidean distance as ground truth, and even outperforms state-of-the-art when using class label as ground truth. Furthermore, in experiments, our method can retrieve images that share the same semantic properties with the query image, which can be used to other vision tasks, e.g. re-training classifiers.
通过编码属性学习语义二进制码用于图像检索
本文研究了在大规模图像集合中学习语义紧凑二进制码以实现高效检索的问题。我们的贡献有三方面。首先,我们引入语义代码,其中每个比特对应一个描述对象属性的属性(例如狗有毛)。其次,我们提出使用矩阵分解(MF)方法,通过对属性进行编码来学习语义代码。与传统的基于pca的编码方法将数据量化为正交基不同,MF不假设基约束,且该方案符合属性相关的特点。最后,为了增强语义代码,将MF扩展到编码额外的非语义代码,以保持原始数据空间的相似性。对a-Pascal数据集的评估表明,当使用欧几里得距离作为基础真值时,我们的方法与最先进的方法相当,甚至在使用类标签作为基础真值时优于最先进的方法。此外,在实验中,我们的方法可以检索到与查询图像具有相同语义属性的图像,这些图像可以用于其他视觉任务,例如重新训练分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信