A no-reference image quality assessment

A. K. Kemalkar, V. Bairagi
{"title":"A no-reference image quality assessment","authors":"A. K. Kemalkar, V. Bairagi","doi":"10.1109/ICE-CCN.2013.6528543","DOIUrl":null,"url":null,"abstract":"This paper presents a no-reference image quality assessment, targeted towards blur distortions based on the study of human blur perception for varying contrast values. A probabilistic framework is developed based on the sensitivity of human blur perception at different contrasts. Utilizing this framework, the probability of detecting blur at each edge in an image is estimated. The blur perception information at each edge is then pooled over the entire image to obtain a final quality score by evaluating the cumulative probability of blur detection. Proposed metric is able to predict relative amount of blurriness in images. Higher metric value represent less blurred image. Results are provided to illustrate the performance of proposed metric. Performance of proposed metric is compared with existing no reference image quality metric for various publically available image databases.","PeriodicalId":286830,"journal":{"name":"2013 IEEE International Conference ON Emerging Trends in Computing, Communication and Nanotechnology (ICECCN)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference ON Emerging Trends in Computing, Communication and Nanotechnology (ICECCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICE-CCN.2013.6528543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

This paper presents a no-reference image quality assessment, targeted towards blur distortions based on the study of human blur perception for varying contrast values. A probabilistic framework is developed based on the sensitivity of human blur perception at different contrasts. Utilizing this framework, the probability of detecting blur at each edge in an image is estimated. The blur perception information at each edge is then pooled over the entire image to obtain a final quality score by evaluating the cumulative probability of blur detection. Proposed metric is able to predict relative amount of blurriness in images. Higher metric value represent less blurred image. Results are provided to illustrate the performance of proposed metric. Performance of proposed metric is compared with existing no reference image quality metric for various publically available image databases.
无参考图像质量评估
本文在研究人类对不同对比度值的模糊感知的基础上,提出了一种针对模糊失真的无参考图像质量评估方法。基于人在不同对比度下的模糊感知灵敏度,提出了一个概率框架。利用该框架,估计了图像中每个边缘检测到模糊的概率。然后将每个边缘的模糊感知信息汇集到整个图像上,通过评估模糊检测的累积概率来获得最终的质量分数。该指标能够预测图像的相对模糊程度。度量值越高,图像模糊程度越低。结果说明了所提出的指标的性能。在各种公开的图像数据库中,将所提出的度量与现有的无参考图像质量度量进行了性能比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信