{"title":"A New Scalable Parallel Algorithm for Fock Matrix Construction","authors":"Xing Liu, Aftab Patel, Edmond Chow","doi":"10.1109/IPDPS.2014.97","DOIUrl":null,"url":null,"abstract":"Hartree-Fock (HF) or self-consistent field (SCF) calculations are widely used in quantum chemistry, and are the starting point for accurate electronic correlation methods. Existing algorithms and software, however, may fail to scale for large numbers of cores of a distributed machine, particularly in the simulation of moderately-sized molecules. In existing codes, HF calculations are divided into tasks. Fine-grained tasks are better for load balance, but coarse-grained tasks require less communication. In this paper, we present a new parallelization of HF calculations that addresses this trade-off: we use fine grained tasks to balance the computation among large numbers of cores, but we also use a scheme to assign tasks to processes to reduce communication. We specifically focus on the distributed construction of the Fock matrix arising in the HF algorithm, and describe the data access patterns in detail. For our test molecules, our implementation shows better scalability than NWChem for constructing the Fock matrix.","PeriodicalId":309291,"journal":{"name":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2014.97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
Hartree-Fock (HF) or self-consistent field (SCF) calculations are widely used in quantum chemistry, and are the starting point for accurate electronic correlation methods. Existing algorithms and software, however, may fail to scale for large numbers of cores of a distributed machine, particularly in the simulation of moderately-sized molecules. In existing codes, HF calculations are divided into tasks. Fine-grained tasks are better for load balance, but coarse-grained tasks require less communication. In this paper, we present a new parallelization of HF calculations that addresses this trade-off: we use fine grained tasks to balance the computation among large numbers of cores, but we also use a scheme to assign tasks to processes to reduce communication. We specifically focus on the distributed construction of the Fock matrix arising in the HF algorithm, and describe the data access patterns in detail. For our test molecules, our implementation shows better scalability than NWChem for constructing the Fock matrix.