Recent Social Trends Among Romanian Twitter Users

Alexandru-Răzvan Florea
{"title":"Recent Social Trends Among Romanian Twitter Users","authors":"Alexandru-Răzvan Florea","doi":"10.2478/icas-2019-0023","DOIUrl":null,"url":null,"abstract":"Abstract Online Social Networks have become a significant part of our quotidian life. In this paper, we aim to provide a proof of concept of how social media data can be effectively extracted, processed and analyzed with powerful open source tools like R. Moreover, we aim to build a reliable methodology for testing and validating social trends by using social media data. We used API routines to establish the connection between R and Twitter, Deep Learning Models to estimate the demographics of the users, Logistic Regression Models to estimate the predispositions of the users, and Propensity Score Matching to build comparable data sets. After analyzing the Romanian Twitter users, the results of our inquiry show that most of them are relatively young and the percentage of males is significantly higher than the percentage of females. Moreover, our results confirm that facial appearances play an essential role in the popularity of an individual.","PeriodicalId":393626,"journal":{"name":"Proceedings of the International Conference on Applied Statistics","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Applied Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/icas-2019-0023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Online Social Networks have become a significant part of our quotidian life. In this paper, we aim to provide a proof of concept of how social media data can be effectively extracted, processed and analyzed with powerful open source tools like R. Moreover, we aim to build a reliable methodology for testing and validating social trends by using social media data. We used API routines to establish the connection between R and Twitter, Deep Learning Models to estimate the demographics of the users, Logistic Regression Models to estimate the predispositions of the users, and Propensity Score Matching to build comparable data sets. After analyzing the Romanian Twitter users, the results of our inquiry show that most of them are relatively young and the percentage of males is significantly higher than the percentage of females. Moreover, our results confirm that facial appearances play an essential role in the popularity of an individual.
罗马尼亚推特用户最近的社交趋势
在线社交网络已经成为我们日常生活的重要组成部分。在本文中,我们的目标是提供一个概念证明,说明如何使用r等强大的开源工具有效地提取、处理和分析社交媒体数据。此外,我们的目标是建立一个可靠的方法,通过使用社交媒体数据来测试和验证社会趋势。我们使用API例程来建立R和Twitter之间的联系,使用深度学习模型来估计用户的人口统计数据,使用逻辑回归模型来估计用户的倾向,使用倾向得分匹配来构建可比较的数据集。在对罗马尼亚Twitter用户进行分析后,我们的调查结果显示,大多数用户相对年轻,男性比例明显高于女性比例。此外,我们的研究结果证实,长相对个人的受欢迎程度起着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信