Accumulation of cadmium in maize roots inoculated with root organ culture of Rhizophagus irregularis improving cadmium tolerance through activation of antioxidative defense enzymes
Rajamony VinuRadha, K. Kumutha, Asish Kanagaraj Binodh
{"title":"Accumulation of cadmium in maize roots inoculated with root organ culture of Rhizophagus irregularis improving cadmium tolerance through activation of antioxidative defense enzymes","authors":"Rajamony VinuRadha, K. Kumutha, Asish Kanagaraj Binodh","doi":"10.7324/jabb.2022.100510","DOIUrl":null,"url":null,"abstract":"Monoxenic culture of arbuscular mycorrhiza, Rhizophagus irregularis in root organ cultures, was formulated in a dextrin-based carrier. R. irregularis was coated in maize seeds (African tall composite) at the rate of 50 g kg -1 . R. irregularis was evaluated for heavy metal tolerance at 25, 50, and 75 ppm cadmium (Cd) in a pot culture experiment. The mean root colonization potential at 25 ppm Cd inoculated with R. irregularis was 48%, which had the highest probability to reach its maximum during 30 DAS. In the present study, Cd was accumulated to a tune of 22.2–38.3% in mycorrhizal roots, which was more than non-mycorrhizal roots. Cd addition at 25 and 50 ppm levels decreases its translocation to shoots to 28% in R. irregularis inoculated plants when compared to uninoculated treatments. The highest tolerance indices were observed in T 6 and T 7 with 100.59 and 98.34, respectively, showing its increased ability of cadmium to bear heavy metal up to a level of 50 ppm. R. irregularis inoculated maize adapted well at 25 ppm Cd and confirmed its significant role in reducing Cd accumulation toward the shoot system.","PeriodicalId":423079,"journal":{"name":"Journal of Applied Biology & Biotechnology","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biology & Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7324/jabb.2022.100510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Monoxenic culture of arbuscular mycorrhiza, Rhizophagus irregularis in root organ cultures, was formulated in a dextrin-based carrier. R. irregularis was coated in maize seeds (African tall composite) at the rate of 50 g kg -1 . R. irregularis was evaluated for heavy metal tolerance at 25, 50, and 75 ppm cadmium (Cd) in a pot culture experiment. The mean root colonization potential at 25 ppm Cd inoculated with R. irregularis was 48%, which had the highest probability to reach its maximum during 30 DAS. In the present study, Cd was accumulated to a tune of 22.2–38.3% in mycorrhizal roots, which was more than non-mycorrhizal roots. Cd addition at 25 and 50 ppm levels decreases its translocation to shoots to 28% in R. irregularis inoculated plants when compared to uninoculated treatments. The highest tolerance indices were observed in T 6 and T 7 with 100.59 and 98.34, respectively, showing its increased ability of cadmium to bear heavy metal up to a level of 50 ppm. R. irregularis inoculated maize adapted well at 25 ppm Cd and confirmed its significant role in reducing Cd accumulation toward the shoot system.