Multiple Drosophila tracking and posture estimation algorithm

S. Arai, Pudith Sirigrivatanawong, K. Hashimoto
{"title":"Multiple Drosophila tracking and posture estimation algorithm","authors":"S. Arai, Pudith Sirigrivatanawong, K. Hashimoto","doi":"10.1109/ICIEV.2015.7334011","DOIUrl":null,"url":null,"abstract":"The analysis of animal locomotion is critical for characterizing and ultimately understanding behaviour. While locomotion quantification of single animals is straightforward, simultaneous analysis of multiple animals in a group is challenging. If performed manually, such analyses are labour-intensive and potentially unreliable, thereby necessitating the use of machine vision algorithms for automatic processing. Machine vision algorithms need to reliably label each animal and maintain all animal identities throughout the video-recorded experiment. This allows detailed characterization of behaviours such as taxis, locomotion and social interaction. In this study, we present an algorithm for analysing the locomotion behaviour of the fruit fly Drosophila melanogaster, a popular model organism in neurobiology. Our algorithm detects all flies inside a circular arena, determines their position and orientation and assigns fly identities between consecutive frame pairs. Position and orientation of the flies are accurately estimated with average errors of 0.108 ± 0.006 mm (approximately 5% of fly body length) and 2.2 ± 0.2°, respectively. Importantly, fly identity is correctly assigned in 99.5% of the cases. Our algorithm can be used to quantify the linear and angular velocities of walking flies in the presence or absence of various behaviourally important stimuli.","PeriodicalId":367355,"journal":{"name":"2015 International Conference on Informatics, Electronics & Vision (ICIEV)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Informatics, Electronics & Vision (ICIEV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEV.2015.7334011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The analysis of animal locomotion is critical for characterizing and ultimately understanding behaviour. While locomotion quantification of single animals is straightforward, simultaneous analysis of multiple animals in a group is challenging. If performed manually, such analyses are labour-intensive and potentially unreliable, thereby necessitating the use of machine vision algorithms for automatic processing. Machine vision algorithms need to reliably label each animal and maintain all animal identities throughout the video-recorded experiment. This allows detailed characterization of behaviours such as taxis, locomotion and social interaction. In this study, we present an algorithm for analysing the locomotion behaviour of the fruit fly Drosophila melanogaster, a popular model organism in neurobiology. Our algorithm detects all flies inside a circular arena, determines their position and orientation and assigns fly identities between consecutive frame pairs. Position and orientation of the flies are accurately estimated with average errors of 0.108 ± 0.006 mm (approximately 5% of fly body length) and 2.2 ± 0.2°, respectively. Importantly, fly identity is correctly assigned in 99.5% of the cases. Our algorithm can be used to quantify the linear and angular velocities of walking flies in the presence or absence of various behaviourally important stimuli.
多果蝇跟踪与姿态估计算法
动物运动的分析对于描述和最终理解行为是至关重要的。虽然单个动物的运动量化是简单的,但同时分析一个群体中的多个动物是具有挑战性的。如果手动执行,这种分析是劳动密集型的,并且可能不可靠,因此需要使用机器视觉算法进行自动处理。机器视觉算法需要可靠地标记每只动物,并在整个视频录制实验过程中保持所有动物的身份。这允许详细描述行为,如出租车,运动和社会互动。在这项研究中,我们提出了一种算法来分析果蝇黑腹果蝇的运动行为,这是神经生物学中流行的模式生物。我们的算法检测圆形竞技场内的所有苍蝇,确定它们的位置和方向,并在连续的帧对之间分配苍蝇的身份。对蝇类的位置和方向进行准确估计,平均误差分别为0.108±0.006 mm(约占蝇体长度的5%)和2.2±0.2°。重要的是,在99.5%的情况下,苍蝇的身份被正确分配。我们的算法可以用来量化行走苍蝇在存在或不存在各种行为重要刺激的情况下的线速度和角速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信