Event Prediction in Processors Using Deep Temporal Models

Tharindu Mathew, Aswin Raghavan, S. Chai
{"title":"Event Prediction in Processors Using Deep Temporal Models","authors":"Tharindu Mathew, Aswin Raghavan, S. Chai","doi":"10.1109/EMC2.2018.00014","DOIUrl":null,"url":null,"abstract":"In order to achieve high processing efficiencies, next generation computer architecture designs need an effective Artificial Intelligence (AI)-framework to learn large-scale processor interactions. In this short paper, we present Deep Temporal Models (DTMs) that offer effective and scalable time-series representations to addresses key challenges for learning processor data: high data rate, cyclic patterns, and high dimensionality. We present our approach using DTMs to learn and predict processor events. We show comparisons using these learning models with promising initial simulation results.","PeriodicalId":377872,"journal":{"name":"2018 1st Workshop on Energy Efficient Machine Learning and Cognitive Computing for Embedded Applications (EMC2)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 1st Workshop on Energy Efficient Machine Learning and Cognitive Computing for Embedded Applications (EMC2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMC2.2018.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to achieve high processing efficiencies, next generation computer architecture designs need an effective Artificial Intelligence (AI)-framework to learn large-scale processor interactions. In this short paper, we present Deep Temporal Models (DTMs) that offer effective and scalable time-series representations to addresses key challenges for learning processor data: high data rate, cyclic patterns, and high dimensionality. We present our approach using DTMs to learn and predict processor events. We show comparisons using these learning models with promising initial simulation results.
基于深度时间模型的处理器事件预测
为了实现高处理效率,下一代计算机架构设计需要一个有效的人工智能(AI)框架来学习大规模处理器交互。在这篇短文中,我们提出了深度时间模型(dtm),它提供了有效和可扩展的时间序列表示,以解决学习处理器数据的关键挑战:高数据率、循环模式和高维度。我们提出了使用dtm来学习和预测处理器事件的方法。我们展示了使用这些学习模型与有希望的初始模拟结果的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信