Letter Sequence Labeling for Compound Splitting

Jianqiang Ma, Verena Henrich, E. Hinrichs
{"title":"Letter Sequence Labeling for Compound Splitting","authors":"Jianqiang Ma, Verena Henrich, E. Hinrichs","doi":"10.18653/v1/W16-2012","DOIUrl":null,"url":null,"abstract":"For languages such as German where compounds occur frequently and are written as single tokens, a wide variety of NLP applications benefits from recognizing and splitting compounds. As the traditional word frequency-based approach to compound splitting has several drawbacks, this paper introduces a letter sequence labeling approach, which can utilize rich word form features to build discriminative learning models that are optimized for splitting. Experiments show that the proposed method significantly outperforms state-of-the-art compound splitters.","PeriodicalId":186158,"journal":{"name":"Special Interest Group on Computational Morphology and Phonology Workshop","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Interest Group on Computational Morphology and Phonology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W16-2012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

For languages such as German where compounds occur frequently and are written as single tokens, a wide variety of NLP applications benefits from recognizing and splitting compounds. As the traditional word frequency-based approach to compound splitting has several drawbacks, this paper introduces a letter sequence labeling approach, which can utilize rich word form features to build discriminative learning models that are optimized for splitting. Experiments show that the proposed method significantly outperforms state-of-the-art compound splitters.
化合物拆分的字母序列标记
对于像德语这样经常出现复合词并被写成单个标记的语言,各种各样的NLP应用程序都受益于对复合词的识别和拆分。针对传统的基于词频的复合分词方法存在的诸多缺陷,本文提出了一种基于字母序列标注的方法,该方法利用丰富的词形特征来构建针对分词进行优化的判别学习模型。实验表明,该方法明显优于最先进的复合分离器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信