Real-time neural inverse optimal control for position trajectory tracking of an induction motor

M. E. Antonio-Toledo, Edgar N. Sanchez, A. Loukianov
{"title":"Real-time neural inverse optimal control for position trajectory tracking of an induction motor","authors":"M. E. Antonio-Toledo, Edgar N. Sanchez, A. Loukianov","doi":"10.1109/SYSOSE.2015.7151923","DOIUrl":null,"url":null,"abstract":"This paper describes a neural inverse optimal control approach for a three-phase induction motor position trajectory and flux magnitude tracking. A recurrent high order neural network (RHONN) is used to identify the plant model, trained with an Extended Kalman Filter (EKF) algorithm; the control law minimize a cost functional avoiding to solve the Hamilton Jacobi Bellman (HBJ) equation. The applicability of the approach is illustrated via experimental results. The proposed scheme allows the easy integration of this kind of motors into a system of systems configuration.","PeriodicalId":399744,"journal":{"name":"2015 10th System of Systems Engineering Conference (SoSE)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th System of Systems Engineering Conference (SoSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYSOSE.2015.7151923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper describes a neural inverse optimal control approach for a three-phase induction motor position trajectory and flux magnitude tracking. A recurrent high order neural network (RHONN) is used to identify the plant model, trained with an Extended Kalman Filter (EKF) algorithm; the control law minimize a cost functional avoiding to solve the Hamilton Jacobi Bellman (HBJ) equation. The applicability of the approach is illustrated via experimental results. The proposed scheme allows the easy integration of this kind of motors into a system of systems configuration.
感应电机位置轨迹跟踪的实时神经逆最优控制
介绍了一种用于三相异步电动机位置轨迹和磁链大小跟踪的神经逆最优控制方法。采用循环高阶神经网络(RHONN)识别植物模型,并采用扩展卡尔曼滤波(EKF)算法进行训练;控制律最小化代价泛函规避求解Hamilton Jacobi Bellman (HBJ)方程。实验结果说明了该方法的适用性。所提出的方案可以很容易地将这种电机集成到系统配置的系统中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信