Data Reliability and Redundancy Optimization of a Secure Multi-cloud Storage Under Uncertainty of Errors and Falsifications

A. Tchernykh, M. Babenko, V. Kuchukov, V. Miranda-López, A. Avetisyan, R. Rivera-Rodríguez, G. Radchenko
{"title":"Data Reliability and Redundancy Optimization of a Secure Multi-cloud Storage Under Uncertainty of Errors and Falsifications","authors":"A. Tchernykh, M. Babenko, V. Kuchukov, V. Miranda-López, A. Avetisyan, R. Rivera-Rodríguez, G. Radchenko","doi":"10.1109/IPDPSW.2019.00099","DOIUrl":null,"url":null,"abstract":"Despite all the benefits a cloud data storages offer to customers, there is a high risk of breach of confidentiality, integrity, and availability related with the uncertainty of errors and falsifications, loss of information, denial of access for a long time, information leakage, conspiracy, and technical failures. In this article, we propose a configurable, reliable, and secure distributed data storage scheme with improved data redundancy, reliability, and encoding/decoding speed. Our system utilizes a Polynomial Residue Number System (PRNS) with a new method of error correction codes and secret sharing schemes. We introduce the concept of an approximate value of a rank (AR) of a polynomial. It reduces the computational complexity of the encoding/decoding and PRNS coefficients size. Based on the properties of the approximate value and PRNS, we introduce the AR-PRNS method for error detection, correction, and controlling computational results with capabilities of scalable parallel computing. We provide a theoretical basis to configure and optimize the redundancy of stored data and encoding/decoding speed to cope with different objective preferences, workloads, and storage properties. Theoretical analysis shows that, by appropriate selection of AR-PRNS parameters, the proposed scheme increases the safety, reliability, and reduces the overhead of data storage.","PeriodicalId":292054,"journal":{"name":"2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2019.00099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Despite all the benefits a cloud data storages offer to customers, there is a high risk of breach of confidentiality, integrity, and availability related with the uncertainty of errors and falsifications, loss of information, denial of access for a long time, information leakage, conspiracy, and technical failures. In this article, we propose a configurable, reliable, and secure distributed data storage scheme with improved data redundancy, reliability, and encoding/decoding speed. Our system utilizes a Polynomial Residue Number System (PRNS) with a new method of error correction codes and secret sharing schemes. We introduce the concept of an approximate value of a rank (AR) of a polynomial. It reduces the computational complexity of the encoding/decoding and PRNS coefficients size. Based on the properties of the approximate value and PRNS, we introduce the AR-PRNS method for error detection, correction, and controlling computational results with capabilities of scalable parallel computing. We provide a theoretical basis to configure and optimize the redundancy of stored data and encoding/decoding speed to cope with different objective preferences, workloads, and storage properties. Theoretical analysis shows that, by appropriate selection of AR-PRNS parameters, the proposed scheme increases the safety, reliability, and reduces the overhead of data storage.
错误和伪造不确定性下安全多云存储的数据可靠性和冗余优化
尽管云数据存储为客户提供了诸多好处,但由于错误和伪造的不确定性、信息丢失、长时间拒绝访问、信息泄露、阴谋和技术故障,存在违反机密性、完整性和可用性的高风险。在本文中,我们提出了一种可配置、可靠和安全的分布式数据存储方案,该方案具有改进的数据冗余、可靠性和编码/解码速度。该系统采用多项式剩余数系统(PRNS),采用新的纠错码方法和秘密共享方案。我们引入了多项式秩的近似值(AR)的概念。它降低了编码/解码的计算复杂度和PRNS系数的大小。基于近似值和PRNS的特性,引入了AR-PRNS方法,通过可扩展的并行计算能力对计算结果进行误差检测、校正和控制。我们为配置和优化存储数据的冗余和编码/解码速度提供了理论基础,以应对不同的客观偏好、工作负载和存储属性。理论分析表明,通过合理选择AR-PRNS参数,该方案提高了安全性、可靠性,降低了数据存储开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信