Performance analysis of multiclass object detection using SVM classifier

A. Fathima, V. Vaidehi, Nisha Rastogi, R. Kumar, S. Sivasubramaniam
{"title":"Performance analysis of multiclass object detection using SVM classifier","authors":"A. Fathima, V. Vaidehi, Nisha Rastogi, R. Kumar, S. Sivasubramaniam","doi":"10.1109/ICRTIT.2013.6844198","DOIUrl":null,"url":null,"abstract":"Multiclass object detection is considered for detecting different object classes in a cluttered environment. Traditional approaches require applying a battery of different classifiers to the image with a large number of complex features used to detect the objects. Specialized detectors usually excel in performance, while the class-specific features increase detection accuracy, but at the expense of complexity. In this paper, an efficient method of human face and car detection using cascaded structure of independent object classifiers is proposed. The approach is based on background elimination using statistical features, followed by foreground detection using Principal component analysis (PCA) and Histogram of Gradients (HoG) with SVM classifier. For detecting the object of interest from the image, the system primarily filters the potential object area by analyzing the local histogram distribution. After background elimination, the trained classifier detects foreground using higher order parameters like PCA for human faces and HOG for cars. In this paper, the kernel function for SVM classifier, suitable for individual object classifier is analysed based upon ROC-AUC parameter. The proposed system is implemented in Matlab. The system is validated with performance metrics like precision, recall and accuracy.","PeriodicalId":113531,"journal":{"name":"2013 International Conference on Recent Trends in Information Technology (ICRTIT)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Recent Trends in Information Technology (ICRTIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRTIT.2013.6844198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Multiclass object detection is considered for detecting different object classes in a cluttered environment. Traditional approaches require applying a battery of different classifiers to the image with a large number of complex features used to detect the objects. Specialized detectors usually excel in performance, while the class-specific features increase detection accuracy, but at the expense of complexity. In this paper, an efficient method of human face and car detection using cascaded structure of independent object classifiers is proposed. The approach is based on background elimination using statistical features, followed by foreground detection using Principal component analysis (PCA) and Histogram of Gradients (HoG) with SVM classifier. For detecting the object of interest from the image, the system primarily filters the potential object area by analyzing the local histogram distribution. After background elimination, the trained classifier detects foreground using higher order parameters like PCA for human faces and HOG for cars. In this paper, the kernel function for SVM classifier, suitable for individual object classifier is analysed based upon ROC-AUC parameter. The proposed system is implemented in Matlab. The system is validated with performance metrics like precision, recall and accuracy.
基于SVM分类器的多类目标检测性能分析
多类对象检测被认为是在一个混乱的环境中检测不同的对象类。传统的方法需要对具有大量复杂特征的图像应用一系列不同的分类器来检测物体。专门的检测器通常在性能上表现出色,而特定于类的特征提高了检测的准确性,但代价是复杂性。本文提出了一种基于独立目标分类器级联结构的人脸和汽车检测方法。该方法基于统计特征的背景消除,然后使用主成分分析(PCA)和梯度直方图(HoG)与SVM分类器进行前景检测。为了从图像中检测感兴趣的目标,系统首先通过分析局部直方图分布来过滤潜在目标区域。背景消除后,训练的分类器使用高阶参数(如人脸的PCA和汽车的HOG)检测前景。本文基于ROC-AUC参数,分析了适合于单目标分类器的SVM分类器核函数。该系统在Matlab中实现。该系统通过精度、召回率和准确性等性能指标进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信