First Passage Time Covariance Matrix Estimators

Seok Young Hong, O. Linton, Xiaolu Zhao
{"title":"First Passage Time Covariance Matrix Estimators","authors":"Seok Young Hong, O. Linton, Xiaolu Zhao","doi":"10.2139/ssrn.3802618","DOIUrl":null,"url":null,"abstract":"We devise a new high-frequency covariance matrix estimator based on price durations which is guaranteed to be positive-definite. Both non-parametric and parametric versions are proposed. A comprehensive Monte Carlo simulation shows that this class of estimators are less biased, more efficient, and generate lower RMSE as well as QLIKE errors. Empirically, we apply both estimators to a global minimum variance portfolio allocation problem and find they can generate comparably low portfolio variance, higher Sharpe ratios, but with considerably lower portfolio turnovers. This matrix estimator is also shown empirically to be more well-conditioned.","PeriodicalId":209192,"journal":{"name":"ERN: Asset Pricing Models (Topic)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Asset Pricing Models (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3802618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We devise a new high-frequency covariance matrix estimator based on price durations which is guaranteed to be positive-definite. Both non-parametric and parametric versions are proposed. A comprehensive Monte Carlo simulation shows that this class of estimators are less biased, more efficient, and generate lower RMSE as well as QLIKE errors. Empirically, we apply both estimators to a global minimum variance portfolio allocation problem and find they can generate comparably low portfolio variance, higher Sharpe ratios, but with considerably lower portfolio turnovers. This matrix estimator is also shown empirically to be more well-conditioned.
第一通道时间协方差矩阵估计
提出了一种基于价格持续时间的高频协方差矩阵估计方法,保证了其正定性。提出了非参数和参数两种版本。一个全面的蒙特卡罗模拟表明,这类估计器偏差更小,效率更高,并且产生更低的RMSE和QLIKE误差。根据经验,我们将这两个估计器应用于全局最小方差投资组合分配问题,并发现它们可以产生相对较低的投资组合方差,较高的夏普比率,但投资组合周转率相当低。该矩阵估计量也被经验地证明是条件较好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信